Problem 1 (Interpolation inequality, 4 points).

Let $\Omega \subset \mathbb{R}^n$ be an open and bounded set with C^1 boundary. Show that for every $\varepsilon > 0$ there exists a constant C_{ε} such that

$$\|Du\|_{L^2(\Omega)} \le \varepsilon \|D^2u\|_{L^2(\Omega)} + C_\varepsilon \|u\|_{L^2(\Omega)}$$

for every $u \in W^{2,2}(\Omega)$. Recall that $||D^2u||^2_{L^2(\Omega)} = \sum_{\alpha,\beta=1}^n ||\partial_\alpha \partial_\beta u||^2_{L^2(\Omega)}$. Hint: argue by contradiction, as in the proof of Poincaré's inequality; in particular, apply the compact Sobolev embedding to the first derivatives to extract a suitable subsequence.

Problem 2 (Integration operator, 4 points).

Let E = C([0,1]) with the uniform norm, and let $T: E \to E$ be the operator defined by

$$Tf(x) = \int_0^x f(y) \,\mathrm{d}y$$

for $f \in E$ and $x \in [0, 1]$. Check that T is compact and prove that $T(B_E)$ is not closed, where $B_E := \{f \in E : ||f|| \le 1\}$. Hint: apply Ascoli-Arzelà Theorem.

Problem 3 (Approximation of compact operators by finite-rank operators, 2+2 points).

Let X, Y be Banach spaces, and let $T: X \to Y$ be a bounded, linear operator.

- a) Let $T_n : X \to Y$ be bounded, linear operators such that $||T T_n|| \to 0$, and assume that each T_n has finite-dimensional range. Prove that T is compact.
- b) Let $\Omega \subset \mathbb{R}^n$ be open, let $p \in (1, \infty)$ and $q = \frac{p}{p-1}$ be conjugate exponents, and let $K \in L^p(\Omega \times \Omega)$. Define the operator $T_K : L^q(\Omega) \to L^p(\Omega)$ by setting

$$T_K f(x) = \int_{\Omega} K(x, y) f(y) \, \mathrm{d}y$$

for $f \in L^q(\Omega)$ and $x \in \Omega$. Prove that T_K is well-defined and is a compact operator. Hint: you can use (without proving it) the fact that K is the limit in $L^p(\Omega \times \Omega)$ of a sequence of kernels K_n of the form

$$K_n(x,y) = \sum_{i=1}^k g_i(x)h_i(y)$$

for functions $g_i, h_i \in L^p(\Omega)$.

Please turn over.

Problem 4 (Normal operators, 2+2 points).

Let H be a real Hilbert space. A bounded, linear operator T on H is said to be normal if $TT^* = T^*T$, where T^* denotes the adjoint of T.

- a) Show that T is normal if and only if $||Tx|| = ||T^*x||$ for every $x \in H$.
- b) Let T be a normal operator. Show that for every $\lambda \in \mathbb{R}$

$$Ker(T - \lambda I) = Ker(T^* - \lambda I).$$

(In particular, T and T^* have the same eigenvalues.)

Hint: observe that $T - \lambda I$ *is normal too.*

Total: 16 points