Problem 1 (Chain rule, 3 points).

Let $\Omega \subset \mathbb{R}^n$ be an open set, $p \in [1, \infty)$. Let $f : \mathbb{R} \to \mathbb{R}$ be of class C^1 , with f' bounded, and assume that f(0) = 0 if Ω has infinite measure. Show that, for every $u \in W^{1,p}(\Omega)$, $f \circ u \in W^{1,p}(\Omega)$ and $D(f \circ u) = f'(u)Du$.

Hint: approximate u in $W_{loc}^{1,p}(\Omega)$ by a sequence $u_k \in C^{\infty}(\Omega)$ of smooth functions.

Problem 2 (Stampacchia's Lemma, 2+1 points).

Let $\Omega \subset \mathbb{R}^n$ be an open set and let $u \in W^{1,p}(\Omega), p \in [1,\infty)$.

a) Show that $u^+, u^-, |u| \in W^{1,p}(\Omega)$, where $u^+ := \max\{u, 0\}, u^- := \min\{u, 0\}$, and that

$$Du^{+}(x) = \begin{cases} Du(x) & \text{if } u(x) > 0, \\ 0 & \text{if } u(x) \le 0, \end{cases}$$
$$Du^{-}(x) = \begin{cases} 0 & \text{if } u(x) \ge 0, \\ Du(x) & \text{if } u(x) < 0. \end{cases}$$

b) Show that Du = 0 almost everywhere on the set $\{x \in \Omega : u(x) = c\}$, where $c \in \mathbb{R}$ is any given constant.

Hint: use the result in Problem 1 with the sequence of functions

$$f_{\varepsilon}(t) := \begin{cases} \sqrt{t^2 + \varepsilon^2} - \varepsilon & \text{if } t > 0, \\ 0 & \text{if } t \le 0. \end{cases}$$

Problem 3 (Integration by parts, 3 points).

Let $\Omega \subset \mathbb{R}^n$ be open, bounded with C^1 boundary. Show that for every $u \in W^{1,p}(\Omega)$ and $\varphi \in C^1(\overline{\Omega})$ one has

$$\int_{\Omega} u D\varphi \, \mathrm{d}x = -\int_{\Omega} \varphi D u \, \mathrm{d}x + \int_{\partial \Omega} T(u) \varphi \nu \, \mathrm{d}\mathcal{H}^{n-1} \, \mathrm{d}u$$

where ν denotes the exterior unit normal to $\partial\Omega$, and $T: W^{1,p}(\Omega) \to L^p(\partial\Omega)$ is the trace operator.

Hint: remember that $C^{\infty}(\overline{\Omega})$ *is dense in* $W^{1,p}(\Omega)$ *.*

Problem 4 (Traces of Sobolev functions, 3 points).

Let $\Omega \subset \mathbb{R}^n$ be open, bounded with C^1 boundary. Let $u \in W^{1,p}(\Omega)$ and $v \in W^{1,p}(\mathbb{R}^n \setminus \overline{\Omega})$, 1 . Prove that the function

$$w(x) := \begin{cases} u(x) & \text{if } x \in \Omega, \\ v(x) & \text{if } x \in \mathbb{R}^n \backslash \overline{\Omega} \end{cases}$$

belongs to $W^{1,p}(\mathbb{R}^n)$ if and only if T(u) = T(v), where T is the trace operator on $\partial\Omega$.

Problem 5 (The space $W_0^{1,p}$, 2+2 points). Let $\Omega \subset \mathbb{R}^n$ be an open, bounded set with C^1 boundary, and let $1 . For <math>u \in L^p(\Omega)$ define

$$\bar{u}(x) := \begin{cases} u(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \notin \Omega. \end{cases}$$

a) Show that $u \in W_0^{1,p}(\Omega)$ if and only if $\bar{u} \in W^{1,p}(\mathbb{R}^n)$.

b) Show that $u \in W_0^{1,p}(\Omega)$ if and only if there exists a constant C such that

$$\left|\int_{\mathbb{R}^n} \bar{u} D\varphi \,\mathrm{d}x\right| \le C \|\varphi\|_{L^{p'}(\mathbb{R}^n)}$$

for every $\varphi \in C_{\mathrm{c}}^{\infty}(\mathbb{R}^n)$, where $\frac{1}{p} + \frac{1}{p'} = 1$.

Hint: use Riesz Representation Theorem.

Total: 16 points