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Abstract

Let u be a mapping from a bounded domain S ⊂ R
4 into a compact

Riemannian manifold N . Its intrinsic biharmonic energy E2(u) is given
by the squared L2-norm of the intrinsic Hessian of u. We consider
weakly converging sequences of critical points of E2. Our main result is
that the energy dissipation along such a sequence is fully due to energy
concentration on a finite set and that the dissipated energy equals a
sum over the energies of finitely many entire critical points of E2.
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1 Introduction and main result

Let S ⊂ R
4 be a bounded Lipschitz domain and let N be a compact Rie-

mannian manifold without boundary. For convenience we assume that N is
embedded in R

n for some n ≥ 2. We denote the second fundamental form of
this embedding by A and we denote the Riemannian curvature tensor of N by
R. For u ∈ C∞(S,N) define the pull-back vector bundle u−1TN in the usual
way and denote the norm on it and on related bundles by | · |. Together with
the Levi-Cività connection on the tangent bundle TN , the mapping u induces
a covariant derivative ∇u on u−1TN . We extend this covariant derivative to
tensor fields in the usual way. Denote by πN the nearest point projection from
a neighbourhood of N onto N and set Pu(x) = DπN(u(x)). Then Pu(x) is the
orthogonal projection from R

4 onto the tangent space Tu(x)N to N at u(x).
Let X ∈ L2(S, Rn) be a section of u−1TN . Following [8] we define

∇uX = (Pu∂αX) ⊗ dxα (1)

∗Address correspondence to: Peter Hornung, Department of Mathematical Sciences, Uni-
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Denote the derivative of u by Du = (∂αu)⊗ dxα. The intrinsic Hessian ∇uDu
is a section of (TS)∗ ⊗ (TS)∗ ⊗ u−1TN . By a standard fact about DπN , it is
given by

∇uDu = (Pu∂α∂βu) ⊗ dxα ⊗ dxβ

=
(

∂α∂βu + A(u)(∂αu, ∂βu)
)

⊗ dxα ⊗ dxβ. (2)

We define the Sobolev spaces

W k,p(S,N) = {u ∈ W k,p(S, Rn) : u(x) ∈ N for a.e. x ∈ S}

and we introduce the energy functional E2 : W 2,2(S,N) → R+ given by

E2(u) =
1

4

∫

S

|∇uDu|2.

Critical points of E2 are called intrinsically biharmonic mappings. There are
also other kinds of second order functionals whose critical points are called
“biharmonic” mappings. The functional E2 is defined intrinsically, i.e. it does
not depend on the embedding of N into R

n. Another intrinsically defined sec-
ond order functional that is naturally associated with u is F2(u) = 1

4

∫

S
|τ(u)|2,

where τ(u) := trace ∇uDu denotes the tension field of u. Critical points of F2

are usually called intrinsically biharmonic mappings. They have been studied
in several papers, see e.g. [7] for an overview. Another functional that can be
associated with u is the energy Ẽ2(u) = 1

4

∫

S
|D2u|2. Its critical points are usu-

ally called extrinsically biharmonic mappings. The functional Ẽ2 enjoys better
analytical properties than E2 and F2, but it has the drawback of depending
on the particular embedding of N into R

n.
The existence of minimizers of E2 under given boundary conditions on the
mapping itself and on its first derivatives was recently established in [8] us-
ing the direct method of the calculus of variations. In the present paper, a
mapping u ∈ W 2,2(S,N) will be called biharmonic if it is critical for E2 under
outer variations, i.e.

d

dt

∣

∣

∣

t=0
E2(πN(u + tφ)) = 0 for all φ ∈ C∞

0 (S, Rn),

cf. [11, 8]. In [11] it is shown that a mapping u ∈ W 2,2(S,N) is biharmonic
precisely if it satisfies

∫

S

∇α∂βu · (∇α∇βφ + R(u)(φ, ∂αu)∂βu) = 0 (3)

for every section φ ∈ W 2,2
0 (S, Rn) ∩ L∞(S, Rn) of u−1TN .

We will study sequences of biharmonic mappings (uk) ⊂ W 2,2(S,N) with
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uniformly bounded energy, i.e. lim supk→∞ E2(uk) < ∞. Since our results are
analogous to known facts about harmonic mappings, we describe the situation
encountered in that context: Let Ω ⊂ R

2 be a bounded Lipschitz domain in
R

2. A mapping u ∈ W 1,2(Ω, N) is said to be (weakly) harmonic if it is a
critical point for the Dirichlet energy

E1(u) =
1

2

∫

Ω

|Du|2.

A given sequence (uk) ⊂ W 1,2(Ω, N) of harmonic mappings with uniformly
bounded Dirichlet energy has a subsequence that converges weakly in W 1,2 to
some mapping u ∈ W 1,2(Ω, N). This convergence in general fails to be strong,
i.e. in general lim infk→∞ E1(uk) > E1(u). The only reason for this loss is
that the energy can concentrate on a lower dimensional subset Σ0 ⊂ Ω. In
particular, uk → u in C1

loc(Ω \ Σ0, R
n). By the results in [3, 2], the mappings

uk and u are smooth. In addition, the set Σ0 is finite. Moreover, for each
point x ∈ Σ0 there exist Mx ∈ N and entire harmonic mappings vx

1 , ..., vx
Mx

∈
C∞(R2, N) such that, after passing to a subsequence,

lim
k→∞

∫

S

|Duk|2 ≥
∫

S

|Du|2 +
∑

x∈Σ0

Mx
∑

j=1

∫

R2

|vx
j |2.

Later the converse inequality was shown to hold as well, cf. [4, 9, 1]. Our main
result is the analogue of these facts for critical points of the functional E2. It
is summarized in the following theorem:

1.1. Theorem. Let S ⊂ R
4 be a bounded Lipschitz domain and let N be

a smooth compact manifold without boundary embedded in R
n. Let (uk) ⊂

W 2,2(S,N) be a sequence of biharmonic mappings and assume that

lim sup
k→∞

∫

S

|∇ukDuk|2 + |Duk|4 < ∞. (4)

Then uk ∈ C∞(S,N) and we may pass to a subsequence in k (again called
(uk)) and find a biharmonic map u ∈ C∞(S,N) and a finite set Σ0 ⊂ S such
that

(i) uk ⇀ u weakly in (W 2,2 ∩ W 1,4)(S, Rn),

(ii) uk → u in C2
loc(S \ Σ0, R

n).

Moreover, for each x ∈ Σ0 there exist Mx ∈ N and biharmonic mappings vx
1 ,

..., vx
Mx

∈ C∞(R4, N) such that

lim
k→∞

∫

S

|∇ukDuk|2 =

∫

S

|∇uDu|2 +
∑

x∈Σ0

Mx
∑

j=1

∫

R4

|∇vx
j Dvx

j |2 (5)
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and

lim
k→∞

∫

S

|Duk|4 =

∫

S

|Du|4 +
∑

x∈Σ0

Mx
∑

j=1

∫

R4

|Dvx
j |4. (6)

Remarks.

(i) By Theorem 2.1 in [8] the hypothesis (4) is equivalent to the seemingly
weaker hypothesis lim supk→∞

∫

S
|∇ukDuk|2 + |Duk|2 < ∞ and also to

the seemingly stronger hypothesis

lim sup
k→∞

‖uk‖W 2,2(S,N) < ∞.

(ii) It is shown in [8] that every biharmonic mapping v ∈ W 2,2(S,N) in fact
satisfies v ∈ C∞(S,N).

(iii) To obtain smoothness of the limiting mapping u as well, one needs a re-
movability result for isolated singularities of biharmonic mappings. This
is derived in Lemma 2.5 below. Another auxiliary result is the existence
of a uniform lower bound on the energy of entire nonconstant biharmonic
mappings, given in Lemma 2.8 below. Analogues of these facts are well
known for harmonic mappings and also for critical points of other higher
order functionals, cf. e.g. [12].

(iv) The main contribution of Theorem 1.1 are the energy identities (5, 6).
In order to obtain an equality (and not just a lower bound for the left-
hand sides), one has to show that no energy concentrates in a ‘neck’
region around a concentration point x ∈ Σ0. This is proven in Section 3
below. Similar results are known in the context of harmonic mappings,
cf. e.g. [4, 9, 1, 6]. They are also known for other kinds of biharmonic
mappings, but only if the target manifold is a round sphere, since then
the Euler-Lagrange equations enjoy a special structure, cf. [12]. Under
the general hypotheses of Theorem 1.1 no such structure seems available,
so a different approach is needed.

Notation. By e1, ..., e4 we denote the standard basis of R
4. We also set

er(x) = x
|x|

for all x ∈ R
4. By Br(x) we denote the open ball in R

4 with center

x and radius r. We set Br = Br(0). If A and B are tensors of the same type
then A · B denotes their scalar product. We will often write ∇Du instead
of ∇uDu, and we identify R

k with its dual (Rk)∗, e.g. we write eα instead of
dxα.
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2 Proof of Theorem 1.1

We define the energy densities

e1(u) = |Du|4
e2(u) = |∇Du|2.

(These should not be confused with the unit vectors in R
4.) We also set

e(u) = e1(u) + e2(u). For U ⊂ S we define Ei(u; U) =
∫

U
ei(u), where i = 1, 2,

and we define E(u; U) = E1(u; U) + E2(u; U).

Theorem 1.1 is a consequence of the following two propositions.

2.1. Proposition. There exists an ε1 > 0 such that the following holds: Let
(uk) ⊂ W 2,2(S,N) be a sequence of biharmonic mappings (so uk ∈ C∞(S,N))
and assume that u ∈ W 2,2(S,N) is such that

uk ⇀ u weakly in (W 2,2 ∩ W 1,4)(S, Rn). (7)

Define

Σ0 = {x ∈ S : lim inf
k→∞

E(uk; Br(x)) ≥ ε1

2
for all r > 0}. (8)

Then u ∈ C∞(S,N) is biharmonic and uk → u in C2
loc(S \ Σ0, N). Moreover,

there exist functions θ1, θ2 : Σ0 → (0,∞) such that θ1(x) ≥ ε1 for all x ∈ Σ0

and
L4bei(uk)

∗
⇀ L4bei(u) +

∑

x∈Σ0

θi(x)δ{x} for i = 1, 2 (9)

weakly-∗ in the dual space of C0
0(S).

Remarks.

(i) By Remark (i) following Theorem 1.1, the hypothesis (4) implies (7) for
a subsequence.

(ii) The measures
∑

x∈Σ0
θi(x)δ{x} are called defect measures. Their common

support Σ0 is empty if and only if the convergence (7) is strong. In that
case the last sum in (9) is defined to be zero.

2.2. Proposition. Let uk, u, Σ0 and θi be as in Proposition 2.1. Then,
for each x ∈ Σ0, there exists Mx ∈ N and biharmonic mappings vx

1 , ..., vx
Mx

∈
C∞(R4, N) such that θi(x) =

∑Mx

j=1 Ei(v
x
j ; R4). In particular,

lim
k→∞

Ei(uk; S) = Ei(u; S) +
∑

x∈Σ0

Mx
∑

j=1

Ei(v
x
j ; R4) for i = 1, 2.
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For the proof of Proposition 2.1 we need three auxiliary results. The following
lemma is a simple consequence of Theorem 2.1 in [8]:

2.3. Lemma. There exists a universal constant C such that the following
holds: Let r > 0, let u ∈ W 2,2(Br, N) and let X ∈ L2(Br, R

n) be a section of
u−1TN . If ∇uX ∈ L2(Br) then X ∈ L4(Br), and

‖X‖L4(Br) ≤ C(‖∇uX‖L2(Br) +
1

r
‖X‖L2(Br))

For u ∈ Ck we introduce the notation [u]Ck(x) =
∑k

j=1 |Dju(x)|1/j. An obvious
consequence of Lemma 5.3 in [11] is the following:

2.4. Lemma. There exists ε1 > 0 such that, for all r > 0 and for all
biharmonic u ∈ C∞(Br, N) satisfying

∫

Br

|Du|4 ≤ ε1 (10)

we have
sup

x∈B r
2

|x|[u]C3(x) ≤ 1. (11)

The following lemma shows that isolated singularities of biharmonic mappings
are removable.

2.5. Lemma. Let Σ ⊂ S be finite and let u ∈ W 2,2(S,N) be biharmonic on
S \ Σ. Then u is biharmonic on S. In particular, u ∈ C∞(S,N).

Proof. This proof closely follows that of Lemma 8.5.3 in [5]. We assume
without loss of generality that S = B1 and that Σ = {0}. The equation (3) is
equivalent to

∫

B1

∇α∂βu · ∇α∇βφ =

∫

B1

f(u,Du ⊗ Du ⊗ D2u) · φ (12)

for some R
n-valued mapping f that is smooth in the first argument and linear

in the second argument. Since u is biharmonic on B1 \ {0}, equation (12) is
satisfied for all φ ∈ (L∞ ∩ W 2,2

0 )(B1 \ {0}, Rn) which are sections of u−1TN .
From the properties of f we deduce that

|f(u,Du ⊗ Du ⊗ D2u)| ≤ C(|D2u|2 + |Du|4). (13)
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Hence f(u,Du ⊗ Du ⊗ D2u) ∈ L1(B1, R
n). For small R ∈ (0, 1) we set

τR(t) =











0 for t ∈ [0, R2]

1 − log r
R

| log R|
for t ∈ [R2, R]

1 for t ∈ [R, 1).

One readily checks that

lim
R→0

∫

B1

|D2τR(|x|)|2 + |DτR(|x|)|4 dx = 0. (14)

Now let φ ∈ (L∞∩W 2,2)(B, Rn) be a section of u−1TN . Then, for all R ∈ (0, 1),

φR(x) = τ(|x|)φ(x)

is still a section of u−1TN , and φR ∈ (L∞ ∩ W 2,2
0 )(B1 \ {0}, Rn). Hence it is

an admissible test function for (12). Using (13, 14) it is easy to check that (12)
holds for all φ as above, i.e. u is biharmonic. Since u ∈ W 2,2(S,N), Remark
(ii) to Theorem 1.1 implies that u ∈ C∞(S,N). �

Proof of Proposition 2.1. Clearly (7) implies lim supk→∞ E(uk; S) < ∞.
Hence Σ0 is finite whatever the choice of ε1. We choose ε1 as in the statement
of Lemma 2.4. Then the Theorem of Arzèla-Ascoli implies that uk → u in
C2

loc(S \Σ0, N). Hence u is biharmonic on S \Σ0. Lemma 2.5 therefore implies
that u ∈ C∞(S,N) and that u is biharmonic on S.
Weak lower semicontinuity of the L2-norm and (7) imply the existence of
(positive) Radon measures µ1, µ2 on S such that

L4bei(uk)
∗
⇀ L4bei(u) + µi for i = 1, 2. (15)

We claim that
µ1({x}) ≥ ε1 for all x ∈ spt µ1. (16)

In fact, let x ∈ S be such that µ1({x}) < ε1. Then by (15) there exists r > 0
such that

lim sup
k→∞

∫

Br(x)

e1(uk) ≤
∫

Br(x)

e1(u) + µ1(B̄r(x)) < ε1.

Thus uk → u in C2(B r
2
(x)) by Lemma 2.4 and the Theorem of Arzèla-

Ascoli. (First only for a subsequence, but all subsequences must converge
to the same limit u because uk ⇀ u in W 2,2(S, Rn).) Thus µ1(B r

2
(x)) = 0, so

x /∈ spt µ1. This proves (16). And (16) implies that sptµ1 is finite and that
µ1 =

∑

x∈spt µ1
θ1(x)δ{x} for a function θ1 : spt µ1 → [ε1,∞).

If x /∈ spt µ1 then (15) implies that

inf
r>0

lim
k→∞

∫

Br(x)

e1(uk) = inf
r>0

∫

Br(x)

e1(u) = 0. (17)
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On the other hand, if x ∈ spt µ1 then there exists r > 0 such that B2r(x) ∩
spt µ1 = {x} because spt µ1 is finite. Thus µ(∂Br(x)) = 0, and so (15) implies

lim
k→∞

∫

Br(x)

e1(uk) =

∫

Br(x)

e1(u) + µ1({x}). (18)

We conclude that

inf
r>0

lim
k→∞

∫

Br(x)

e1(uk) = µ1({x}) for all x ∈ S. (19)

Now (19) together with (16) imply that sptµ1 ⊂ Σ0. On the other hand, if
x /∈ spt µ1 then (17) and Lemma 2.4 imply that there is r > 0 such that uk → u
on C2(Br(x), N), hence x /∈ spt µ2 and x /∈ Σ0. Thus

spt µ2 ⊂ spt µ1 = Σ0.

It remains to check that spt µ1 ⊂ spt µ2. But (15) implies that, for r ∈
(0, dist∂S(x)),

lim sup
k→∞

∫

Br(x)

(

|Duk|2
r2

+e2(uk)

)

≤
∫

Br(x)

(

|Du|2
r2

+e2(u)

)

+µ2(B̄r(x)), (20)

because by Sobolev embedding we have Duk → Du strongly in L2. If x /∈
spt µ2, then the infimum over r > 0 of the right-hand side of (20) is zero, since
Du ∈ L4. Hence Lemma 2.3 implies that x /∈ Σ0. �

For the proof of Proposition 2.2 we will need the following three lemmas:

2.6. Lemma. There exists a modulus of continuity ω (i.e. ω ∈ C0([0,∞)) is
nondecreasing and ω(0) = 0) such that, whenever r > 0 and u ∈ W 2,2(Br, N)
is biharmonic then

dist∂Br
(x)[u]C3(x) ≤ ω

(∫

Br

|Du|4
)

for all x ∈ Br.

Proof. Notice that u ∈ C∞(Br, N) by Remark (ii) to Theorem 1.1. The claim
follows from a scaled version of Lemma 5.3 in [11] and from the fact that, by

Jensen’s inequality,
(

ρ−2
∫

Bρ(a)
|Du|2

)2

≤
∫

Bρ(a)
|Du|4. �

We will also need the following crucial estimate.
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2.7. Lemma. There exists a constant C3 such that the following holds: For
all R ∈ (0, 3

8
) and for all biharmonic u ∈ C∞(B1, N) satisfying

ε := sup
ρ∈(R, 1

2
)

E(u; B2ρ \ Bρ) ≤
1

C3

(21)

we have
E(u; B1 \ BR) ≤ C3ω(ε) + 2ε. (22)

Here, ω is as in the conclusion of Lemma 2.6.

The proof of Lemma 2.7 will be given in Section 3.
Finally, we will need the existence of a uniform lower bound on the energy of
nonconstant entire biharmonic mappings. An analogous fact is well known for
harmonic mappings and also for other kinds of biharmonic mappings, cf. e.g.
[12].

2.8. Lemma. There exists a constant α > 0 such that E(u; R4) ≥ α for every
nonconstant biharmonic mapping u ∈ C∞(R4, N).

Proof. If the claim were false then there would exist nonconstant bihar-
monic um ∈ C∞(R4, N) such that limn→∞ E(um; R4) = 0. After passing to
a subsequence we have Dum → 0 pointwise almost everywhere. Therefore,
since um is nonconstant and since Dum is continuous, there exist xm ∈ R

4

such that rm := |Dum(xm)| are nonzero but limm→∞ rm = 0. Define
ũm(x) = um(xm + x

rm
). Then E(ũm; R4) = E(um; R4) converges to zero as

m → ∞. By Lemma 2.4 this implies the existence of a constant mapping u
such that ũm → u in C2

loc(R
4, N). But on the other hand, |Dũm(0)| = 1 for all

m, so |Du(0)| = 1. This contradiction finishes the proof. �

Proof of Proposition 2.2. By Proposition 2.1 we have uk, u ∈ C∞(S,N).
Since the case Σ0 = ∅ is trivial, we assume that Σ0 is nonempty. After translat-
ing, rescaling (the energy E is scaling invariant) and restricting we may assume
that Σ0 = {0} and that S = B1. By Proposition 2.1 we have uk ⇀ u weakly
in (W 2,2 ∩ W 1,4)(B1, R

n) and uk → u in C2
loc(B1 \ {0}, N). Moreover, there is

some
θ ≥ ε1 (23)

such that
L4be(uk)

∗
⇀ L4be(u) + θδ{0}. (24)

Let ε ∈ (0, 1) be such that

C3ω(ε) + 3ε ≤ min
{α

4
,
ε1

4

}

,
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where ω is as in Lemma 2.6, C3 is as in Lemma 2.7 and ε1 is as in Lemma 2.4.
Since u ∈ W 2,2(B1, R

n), there exists Q ∈ (0, 1) such that

∫

BQ

e(u) ≤ ε

2
. (25)

We claim that there exists a sequence Rk → 0 such that, for all k large enough,

E(uk; B2ρ \ Bρ) ≤ ε for all ρ ∈ [Rk,
Q

2
], (26)

E(uk; B2Rk
\ BRk

) = ε. (27)

In fact, set

Rk = {r ∈ (0,
Q

2
) : E(uk; B2r \ Br) > ε}.

If infinitely many of the Rk were empty, Lemma 2.7 would imply that there
exists ki → ∞ such that E(uki

; BQ \ Bri
) ≤ C3ω(ε) + 2ε for any sequence

ri → 0. Choosing this sequence in such a way that E(uki
; Bri

) ≤ ε for all i, we
would conclude that E(uki

; BQ) ≤ C3ω(ε) + 3ε ≤ ε1

4
. This would contradict

(23).
Thus, for k large, Rk 6= ∅ and we can define Rk = supRk. Clearly Rk > 0
because

∫

B2r\Br
e(uk) ≤

∫

B2r
e(uk) → 0 as r → 0. On the other hand, Rk → 0,

since otherwise ρ = 1
2
lim infk→∞ Rk is positive, so

lim sup
k→0

∫

B2Rk
\BRk

e(uk) ≤ lim
k→0

∫

BQ\Bρ

e(uk) =

∫

BQ\Bρ

e(u) ≤ ε

2

by (25). This contradicts the fact that Rk is contained in the closure of Rk,
which by continuity of r 7→

∫

B2r\Br
e(uk) implies that

∫

B2Rk
\BRk

e(uk) ≥ ε. This

also proves (27). And (26) follows from the definition of Rk.
Combining (26) with (a scaled version of) Lemma 2.7, we conclude that

E(uk; BQ \ BRk
) ≤ C3ω(ε) + 2ε ≤ α

4
. (28)

Set vk(x) = uk(Rkx). Then by (24)

lim sup
k→∞

E(vk; BR) = lim sup
k→∞

E(uk; BRRk
) ≤ inf

ρ>0
lim sup

k→∞
E(uk; Bρ) = θ (29)

for all R > 0. Set

Σ(1) = {x ∈ R
4 : lim inf

k→∞
E(vk; Br(x)) ≥ ε1

2
for all r > 0}.

By (29) we can apply Proposition 2.1 to each BR. We conclude that Σ(1) is
locally finite and that there exists a biharmonic mapping v ∈ C∞(R4, N) such

10



that, after passing to a subsequence, vk ⇀ v weakly in (W 1,4
loc ∩ W 2,2

loc )(R4, Rn)
and

vk → v in C2
loc(R

4 \ Σ(1), Rn), (30)

and that there are a functions θ
(1)
1 , θ

(1)
2 : Σ(1) → (0,∞) such that

L4bei(vk)
∗
⇀ L4bei(v) +

∑

x∈Σ(1)

θ
(1)
i (x)δ{x} for i = 1, 2. (31)

On the other hand, the bound (28) implies that

lim sup
k→∞

E(vk; BR \ B̄1) ≤ C3ω(ε) + 2ε for all R > 1.

Thus Σ(1) ⊂ B̄1 (so Σ(1) is finite) and therefore

vk → v in C2
loc(R

4 \ B1, R
n) (32)

by (30). From this and since E(vk; B2 \ B̄1) = E(uk; B2Rk
\ B̄Rk

) = ε for
all k by (27), we conclude that E(v; R4) ≥ ε. Hence Lemma 2.8 implies that
E(v; R4) ≥ α.

Claim #1. For all η > 0 there exist R > 1 and ρ ∈ (0, 1) such that

lim inf
k→∞

E(uk; Bρ \ BRRk
) ≤ η. (33)

To prove this claim, let us first show that for all δ > 0 there exist R and ρ and
a sequence ki → ∞ such that

E(uki
; B2r \ Br) ≤ δ for all i ∈ N and all r ∈ [RRki

, ρ/2]. (34)

In fact, assume that this were not the case. Then there would exist δ ∈ (0, ε)
such that for all R, ρ the set

R̂k = {r ∈ [RRk, ρ/2] : E(uk; B2r \ Br) > δ}

is nonempty for all k large enough. We choose R > 2 so large and ρ ∈ (0, Q)
so small that

E(v; B4R̂ \ BR̂/2) ≤
δ

4
for all R̂ ≥ R and (35)

E(u; Bρ) ≤
δ

4
. (36)

This is clearly possible because e(v) ∈ L1(R4). Let R̂k = sup R̂k, hence
R̂k ∈ [RRk,

ρ
2
]. Arguing as above for Rk, using (36) one readily checks that

R̂k → 0. We claim that
R̂k

Rk

→ ∞. (37)

11



Indeed, if this were not the case then (after passing to a subsequence) there

would exist R̂ ∈ [R,∞) such that R̂k

Rk
∈ [ R̂

2
, 2R̂] for k large enough. Thus by

the definition of R̂k and since R̂ ≥ R > 2 and Σ(1) ⊂ B̄1,

δ ≤ lim sup
k→∞

E(uk; B2R̂k
\ BR̂k

)

≤ lim sup
k→∞

E(vk; B4R̂ \ BR̂/2)

= E(v; B4R̂ \ BR̂/2).

This contradiction to (35) shows that (37) must be true.
Now define v̂k(x) = uk(R̂kx). As done above for Rk and vk, using the fact
that δ ≤ ε one shows that there exists a nontrivial biharmonic mapping v̂ ∈
C∞(R4, N) such that, after passing to a subsequence, v̂k ⇀ v in (W 2,2

loc ∩
W 1,4

loc )(R4, Rn). Since v̂ is nontrivial, Lemma 2.8 implies that E(v̂; R4) ≥ α.

Hence by (37) and since R̂k → 0, for all R̂ > 1 we have

lim inf
k→∞

E(uk; Bρ \ BRRk
) ≥ lim inf

k→∞
E(uk; BR̂R̂k

\ BRRk
)

= lim inf
k→∞

E(v̂k; BR̂ \ B
R

Rk
R̂k

)

≥ sup
r>0

lim inf
k→∞

E(v̂k; BR̂ \ Br)

≥ E(v̂; BR̂)

because v̂k ⇀ v̂ on BR̂. Taking the supremum over all R̂ > 1 and recalling
that E(v̂; R4) ≥ α, we conclude that lim infk→∞ E(uk; Bρ \ BRRk

) ≥ α. This
contradiction to (28) concludes the proof of (34).
Combining Lemma 2.7 with (34) and choosing δ small enough shows that
Claim #1 is true.

The results obtained so far apply to any θ > 0. Now we argue by induction:
Assume that m ∈ N is such that θ ∈ ((m−1)α,mα]. If m ≥ 2 then assume, in
addition, that Proposition 2.2 is true for all θ ∈ (0, (m − 1)α]. On one hand,
for i = 1, 2, for all R ∈ (1,∞) and for all ρ ∈ (0, 1) we have:

θi + Ei(u; Bρ) = lim
k→∞

(

Ei(uk; Bρ \ BRRk
) + Ei(uk; BRRk

)
)

≥ lim
k→∞

Ei(vk; BR)

= Ei(v; BR) +
∑

x∈Σ(1)

θ
(1)
i (x).

(First we used (9) and that µi(∂Bρ) = 0 for all ρ ∈ (0, 1), and then we used
(31) together with the fact that Σ(1) ⊂ B̄1.) Taking ρ → 0 and R → ∞ we
conclude

θi ≥ Ei(v; R4) +
∑

x∈Σ(1)

θ
(1)
i (x) for both i = 1, 2. (38)

12



Hence
θ ≥ E(v; R4) +

∑

x∈Σ(1)

θ(1)(x). (39)

Since E(v; R4) ≥ α this implies that θ(1)(x) ≤ θ − α for all x ∈ Σ(1). If m ≥ 2
we can thus apply the induction hypothesis to conclude that

θ
(1)
i (x) =

Mx
∑

j=1

Ei(v
j
x; R

4) for both i = 1, 2. (40)

Here v1
x, ..., v

Mx
x ∈ C∞(R4, N) are biharmonic and Mx ∈ (0,m− 1] is a natural

number. (If m = 1 then (39) implies that Σ(1) = ∅ and that θ = α = E(v; R4).
This concludes the proof of the case m = 1.)
On the other hand, for all ρ ∈ (0, 1) and all R > 1,

θ ≤ lim
k→∞

(

E(uk; Bρ \ BRRk
) + E(uk; BRRk

)
)

≤ lim inf
k→∞

E(uk; Bρ \ BRRk
) + lim

k→∞
E(vk; BR)

= lim inf
k→∞

E(uk; Bρ \ BRRk
) + E(v; BR) +

∑

x∈Σ(1)

θ(1)(x)δ{x} (41)

We used that Σ(1) ⊂ B̄1, so limk→∞ E(vk; BR) = E(v; BR)+
∑

x∈Σ(1) θ(1)(x)δ{x}.
Now let ρ → 0 and R → ∞ in (41) using Claim #1. We conclude that
θ ≤ E(v; R4) +

∑

x∈Σ(1) θ(1)(x). Thus by (39, 40):

θ = E(v; R4) +
∑

x∈Σ(1)

Mx
∑

j=1

E(vj
x; R

4). (42)

Combininig this with the inequalities (38) immediately implies that

θi = E(v; R4) +
∑

x∈Σ(1)

Mx
∑

j=1

Ei(v
j
x; R

4)

must hold separately for i = 1, 2. �

3 Energy estimates on the ‘neck’ region

The purpose of this section is to prove the following proposition.
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3.1. Proposition. There exists a constant C1 such that the following holds:
For all R ∈ (0, 1

2
) and for all biharmonic u ∈ C∞(B1, N) satisfying

ε := sup
x∈B1\B̄R

|x|[u]C3(x) < 1 (43)

we have
∫

B1\BR

|∇uDu|2 ≤ C1

(

ε + E(u; B1 \ BR)
)

ε. (44)

3.2. Corollary. There exists a constant C2 such that the following holds: For
all R ∈ (0, 1

2
) and for all biharmonic u ∈ C∞(B1, N) satisfying (43) we have

∫

B1\BR

|Du|2
|x|2 ≤ C2

(

ε + E(u; B1 \ BR)
)

ε. (45)

If, in addition, ε ≤ 1
2(C1+C2)

then

E(u; B1 \ BR) ≤ 2(C1 + C2)ε
2. (46)

Proof. Set ε = supx∈B1\B̄R
|x|[u]C3(x). By (44) and by (77) from Lemma 5.2

we have
∫

B1\B̄R

|Du|2
|x|2 ≤ C1(ε + E(u; B1 \ B̄R))ε + 2H3(∂B1)ε

2.

This implies (45) because ε < 1. We clearly have

∫

B1\B̄R

|Du|4 ≤ ε2

∫

B1\B̄R

|Du|2
|x|2 .

Thus (45) implies that

∫

B1\B̄R

|Du|4 ≤ C2(ε + E(u; B1 \ B̄R))ε3.

Adding this to (44) yields

E(u; B1 \ B̄R) ≤ (C1 + C2)ε
2 + (C1 + C2)E(u; B1 \ B̄R)ε,

because ε < 1. Since ε ≤ 1
2(C1+C2)

, we can absorb the second term into the

left-hand side. This yields (46). �
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As a consequence of Corollary 3.2 we obtain Lemma 2.7:

Proof of Lemma 2.7. Set ε = supρ∈(R, 1
2
) E(u; B2ρ \ Bρ). We claim that

|x|[u]C3(x) ≤ 4ω(ε) for all x ∈ B 1
2
\ B̄ 4

3
R. (47)

In fact, let x ∈ B 1
2
\ B̄ 4

3
R and apply Lemma 2.6 to the ball B |x|

4

(x). This yields

dist∂B |x|
4

(x)(x)[u]C3(x) ≤ ω





∫

B |x|
4 (x)

|Du|4


 .

Since B |x|
4

(x) ⊂ B 3
2
|x| \ B̄ 3

4
|x|, this implies (47).

Applying (46) (with B 1
2

instead of B1 and B 4R
3

instead of BR) to (47) implies

E(u; B 1
2
\ B 4

3
R) ≤ Cω2(ε). (48)

for some constant C, provided that ε is small enough (since then ω(ε) is small,
and so |x|[u]C3(x) is small by (47)). Finally, notice that by definition of ε we
have E(u; B1 \ B 1

2
) + E(u; B2R \ BR) ≤ 2ε. Together with (48) and smallness

of ω(ε) this implies (22). �

The rest of this section will be devoted to the proof of Proposition 3.1. We
will use the following notation:

∂ru = eα
r ∂αu

Dru = ∂ru ⊗ er

DS3u = Du − Dru

D2u = (∂α∂βu) ⊗ eα ⊗ eβ

Above and in what follows we tacitly sum over repeated indices. A short
calculation shows that

DS3u =
(

|x|∂∂αer
u
)

⊗ eα. (49)

Proof of Proposition 3.1. Since u ∈ C∞(B1, N), Lemma 4.2 in [11] implies
that (3) is equivalent to

∆2u = −∂αEα[u] + G[u], (50)

where

Eα[u] = −∂β

(

A(u)(∂αu, ∂βu)

)

+ Fα[u],
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and Fα[u] : S → (R4)∗⊗R
n and G[u] : S → R

n are as in Lemma 4.2 in [11], i.e.
Fα[u] = fα(u,∇Du ⊗ Du) for functions fα which are smooth in the first and
linear in the second argument, and G[u] = g1(u,∇Du⊗∇Du) + g2(u,∇Du⊗
Du ⊗ Du) for functions g1, g2 which again are smooth in the first and linear
in the second argument. Therefore,

|G[u]| ≤ C(|D2u|2 + |Du|4) (51)

|Eα[u]| ≤ C(|D2u||Du| + |Du|3). (52)

For r1 < r2 define the open annulus

A(r1, r2) = Br2 \ B̄r1

and set A = A(R, 1). (This should not be confused with the second funda-
mental form of N .) As will we shown at the end of this proof, we may assume
without loss of generality that R = 2−L for some integer L > 1.
Define Rk = 2kR and set Ak = A(Rk, Rk+1). Set

ε = sup
x∈B1\B̄R

|x|[u]C3(x). (53)

Following an idea used in [10] and [1] in the context of harmonic mappings,
we introduce the unique radial mapping q : A → R

n solving the following
boundary value problem for all k = 0, ..., L:

∆2q = 0 on Ak (54)

q(Rk) =
1

H3(∂BRk
)

∫

∂BRk

u and q′(Rk) =
1

H3(∂BRk
)

∫

∂BRk

∂ru. (55)

(For a radial function of the form q(x) = q̃(|x|) we often write q instead of
q̃.) Notice that q is indeed well and uniquely defined on each Ak by (54,
55) because (54) is simply a fourth order ordinary differential equation on
(Rk, Rk+1), since q is radial. (See Lemma 5.1 below for details.) The rest of
this proof is divided into Lemma 3.3 and Lemma 3.4 below. Combining their
conclusions one obtains that of Proposition 3.1.
Let us finally check that the case of arbitrary R ∈ (0, 1) follows from the case
when R = 2−L. In fact, for general R let L be such that 2LR ∈ [1

2
, 1). The

definition of ε implies that
∫

A(2LR,1)

|∇Du|2 ≤ ε2

∫

A(2LR,1)

|x|−4 ≤ ε2H3(∂B1) log 2.

Applying Proposition 3.1 with B2LR instead of B1, the estimate (44) follows.
�
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3.3. Lemma. For u, q and R as in the proof of Proposition 3.1 we have

∫

A

|D2(u − q)|2 ≤ C(ε +

∫

A

|∇uDu|2 + |Du|4)ε (56)

and
∫

A

|D(u − q)|2
|x|2 ≤ C(ε +

∫

A

|∇uDu|2 + |Du|4)ε. (57)

Proof. Since q|Ak
is a solution of a linear ordinary differential equation with

smooth coefficients, it is C∞ up to the boundary of Ak. Moreover, for r ∈
(Rk, Rk+1), by Lemma 5.1 there exists a universal constant C such that

|q′(r)| ≤ C(|q′(Rk)| + |q′(Rk+1)| +
1

Rk

|q(Rk+1) − q(Rk)|). (58)

By (55) and by (53) this implies that, for all x ∈ ∂BRk
and all k, we have

|u(x) − q(Rk)| ≤ ‖Du‖L∞(∂BRk
) · diam(∂BRk

). Therefore,

|q(Rk+1) − q(Rk)| ≤ ‖Du‖L∞(Ak) diam Ak ≤ Cε (59)

by (53) and because diam Ak ≤ CRk. Since |x| is comparable to Rk on Ak

and since k was arbitrary, we conclude from (58, 59) and from (55, 53) that
|x||Dq(x)| ≤ Cε for all x ∈ A. By (55) and by (53) this implies that |u− q| ≤
Cε. Summarizing, we have shown that

|(u − q)(x)| + |x||D(u − q)(x)| ≤ Cε for all x ∈ A. (60)

Notice that while (55) implies that q ∈ C1(A, Rn) and that q|Ak
∈ C∞(Āk, R

n)
for all k, in general q /∈ C2(A; Rn).
By partial integration one obtains, for arbitrary v ∈ C2(Āk, R

n),

∫

Ak

|D2v|2 =

∫

Ak

(∂α∂βv) · (∂α∂βv)

=

∫

Ak

(∆2v) · v +

[

∫

∂Ak

(∂r∂βv) · ∂βv − (∂r∆v) · v
]Rk+1

r=Rk

.

Here and below we use the notation

[

f(r)

]t2

r=t1

:= f(t2) − f(t1)
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for functions f ∈ C0([t1, t2]). Inserting v = u−q and summing over k = 0, ..., L
yields

∫

A

|D2(u − q)|2 =

∫

A

(∆2u) · (u − q)

+
L
∑

k=0

[

∫

∂Bρ

(∂r∂β(u − q)) · ∂β(u − q) − (∂r∆(u − q)) · (u − q)

]Rk+1

ρ=Rk

=

∫

A

(∆2u) · (u − q) +

[

∫

∂Bρ

∂r∂βu · ∂β(u − q) − ∂r∆u · (u − q)

]1

ρ=R

(61)

−
L
∑

k=0

[

∫

∂Bρ

(∂r∂rq)(ρ) · ∂r(u − q)(x) − (∂r∆q)(ρ) · (u − q)(x) dH3(x)

]Rk+1

ρ=Rk

.

In the first step we used that ∆2q = 0 on Ak. In the last step we used that
the boundary integrals with continuous integrands cancel successively, and we
used that q is radial. Since q is radial, the same is true for ∂r∂rq and ∂r∆q,
see (74). The choice of boundary conditions (55) implies that

(∂r∂rq)(ρ) ·
∫

∂Bρ

∂r(u − q)(x) dH3(x) = 0 and

(∂r∆q)(ρ) ·
∫

∂Bρ

(u − q)(x) dH3(x) = 0

for all ρ ∈ {R0, R1, ..., RL}. So the sum in the last term in (61) is zero.
(The discontinuous expressions q′′ = ∂r∂rq and q′′′ occurring in ∂r∆q must
be understood in the trace sense: If ∂BRk

belongs to ∂Ak then q′′(Rk) =
limr↑Rk

q′′(r) and if ∂BRk
belongs to ∂Ak+1 then q′′(Rk) = limr↓Rk

q′′(r). These
limits exists because, as noted above, q|Ak

is smooth up to the boundary of
Ak.)

To estimate the second term in (61) we use (60) and (53). This gives

∫

∂Br

|∂r∂βu||∂β(u − q)| ≤ CH3(∂Br)
ε

r2

ε

r
≤ Cε2.

Similarly,
∫

∂Br
|∂r∆u||u − q| ≤ Cε2. Thus (61) implies

∫

A

|D2(u − q)|2 ≤
∣

∣

∣

∣

∣

∫

A

(∆2u) · (u − q)

∣

∣

∣

∣

∣

+ Cε2. (62)

To estimate the term
∣

∣

∣

∫

A
(∆2u) · (u − q)

∣

∣

∣ in (62), we use (50) to replace ∆2u.
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We obtain:
∫

A

(∆2u) · (u − q) =

∫

A

(−∂αEα[u]) · (u − q) + G[u] · (u − q)

=

∫

A

Eα[u] · ∂α(u − q) +

∫

A

G[u] · (u − q) −
[

∫

∂Br

xα

|x|Eα[u] · (u − q)

]1

r=R

.

(63)

To estimate the last term in (63) we simply use that |Eα[u]| ≤ |D2u||Du| +
|Du|3 ≤ C ε2

|x|3
pointwise by (52). Thus

∫

∂Br

|Eα[u]||u − q| ≤ Cε3H3(∂Br)r
−3 ≤ Cε3

for both r = 1 and r = R.
To estimate the second term in (63) we use (51, 60) to find

∫

A

|G[u]||u − q| ≤ Cε

∫

A

(|D2u|2 + |Du|4).

To estimate the first term in (63) notice that by (52) and by (60) we have

∫

A

|Eα[u]||D(u − q)| ≤ Cε

∫

A

|D2u| |Du|
|x| +

|Du|3
|x|

≤ Cε

∫

A

(|D2u|2 + |Du|4 +
|Du|2
|x|2 ). (64)

Applying Lemma 5.2 to v = u with r1 = R and r2 = 1, we have

∫

A

|Du|2
|x|2 ≤

∫

A

|D2u|2 +

[

1

r

∫

∂Br

|Du|2
]1

r=R

.

The boundary terms can be estimated as above using the definition of ε. Thus
∫

A
|Du|2

|x|2
≤
∫

A
|D2u|2 + Cε2. So (64) implies

∫

A

|Eα[u]||D(u − q)| ≤ Cε
(

ε2 +

∫

A

|D2u|2 + |Du|4
)

Since |D2u|2 ≤ C(N)(|∇Du|2+|Du|4) for some constant C(N) depending only
on the immersion N ↪→ R

n, this concludes the proof of (56).

To prove (57) we apply Lemma 5.2 to each restriction (u− q)|Ak
. This yields:

∫

Ak

|D(u − q)|2
|x|2 ≤

∫

Ak

|D2(u − q)|2 +

[

1

r

∫

∂Br

|D(u − q)|2
]Rk+1

r=Rk

.
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When we sum over k = 0, ..., L, the terms in square brackets cancel successively
because D(u− q) is continuous. After estimating the boundary terms on ∂B1

and on ∂BR using (53), this yields (57). �

3.4. Lemma. For u, q and R as in the proof of Proposition 3.1 we have

∫

A(R,1)

|D2(u−q)|2 ≥
(1

2
−
√

2

3

)

∫

A(R,1)

|∇uDu|2−C(ε+

∫

A

|∇uDu|2+ |Du|4)ε.

Proof. For v ∈ C∞(S, Rn) we have D2v = DDS3v + DDrv, where DS3v =
Dv − Drv. Thus

|D2v|2 ≥ |DDS3v|2 + 2D(Dv − Drv) · DDrv. (65)

Now D(Dv − Drv) · DDrv equals

∂α((∂βv) ⊗ (eβ − eβ
r er)) · ∂α(∂γv ⊗ eγ

rer)

=

(

(∂α∂βv) ⊗ (eβ − eβ
r er) − (∂βv) ⊗ ∂α(eβ

r er)

)

·
(

(∂α∂γv) ⊗ eγ
rer + (∂γv) ⊗ ∂α(eγ

rer)

)

=

(

(∂α∂βv) ⊗ (eβ − eβ
r er)

)

·
(

(∂γv) ⊗ ∂α(eγ
rer)

)

−
∣

∣

∣

∣

∣

(∂βv) ⊗ ∂α(eβ
r er)

∣

∣

∣

∣

∣

2

− (∂βv) ⊗ ∂α(eβ
r er) · (∂α∂γv) ⊗ eγ

rer

=

(

(∂α∂βv) ⊗ (eβ − eβ
r er)

)

·
(

(∂rv) ⊗ (∂αer)

)

−
∣

∣

∣

∣

∣

(∂βv) ⊗ ∂α(eβ
r er)

∣

∣

∣

∣

∣

2

− (∂βv) ⊗ (∂αeβ
r )er · (∂α∂γv) ⊗ eγ

rer

=(∂∂αer
∂αv) · (∂rv) −

∣

∣

∣
∂βv
∣

∣

∣

2 ∣
∣

∣
∂α(eβ

r er)
∣

∣

∣

2

− ∂∂αer
v · (∂r∂αv).

Since the second term is negative, this shows that

D(Dv − Drv) · DDrv ≥ −2|Der||D2v||Dv| ≥ −(|D2v|2 + |Der|2|Dv|2). (66)

Since |Der(x)|2 = 3
|x|2

, inserting (66) into the estimate (65) yields

3|D2v|2 ≥ |DDS3v|2 − 6
|Dv|2
|x|2 . (67)
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Inserting v = u − q, integrating and using that DS3q = 0 gives

3

∫

|D2(u − q)|2 ≥
∫

|DDS3u|2 − 2

∫ |D(u − q)|2
|x|2

≥
∫

|∇Du −∇Dru|2 − 2

∫ |D(u − q)|2
|x|2

≥ (1 − 1√
2
)

∫

|∇Du|2 + (1 −
√

2)

∫

|∇Dru|2 − 2

∫ |D(u − q)|2
|x|2 .

In the second step we used that Du = DS3u + Dru and the trivial estimate
|Df | ≥ |∇uf |. By (70) the last line equals

(
3

2
−
√

2)

∫

|∇Du|2 + (
√

2 − 1)

∫ |∇u(|x|∂ru)|2
|x|2 − 2

∫ |D(u − q)|2
|x|2

+
1 −

√
2

2

[

∫

∂Br

(

3

r
|Du|2 − 2(∇u

r∂ru) · ∂ru

)

dH3

]1

r=R

.

The claim follows by dropping the second term, which is nonnegative, and
noticing that the fourth term is dominated by ε2 by (53) while, by (57), the
third term is dominated by ε(ε +

∫

A
|∇Du|2 + |Du|4) �

4 An equality for stationary biharmonic map-

pings

The following lemma is true for mappings which are stationary with respect
to the energy E2 in the sense of [8]. We do not need the precise definition
here. We only remark that every smooth biharmonic mapping is also station-
ary. Therefore by Remark (ii) to Theorem 1.1, every u ∈ W 2,2(S,N) that
is biharmonic is also stationary. In order to recall the monotonicity formula
from [8], for u ∈ W 2,2(B1, N) we define

F(r) =
1

4

∫

Br

|∇Du|2 +
1

4

∫

∂Br

(

3

r
|Du|2 +

2

r
|∂ru|2 − 2(Dr∂ru · ∂ru)

)

dH3.

Theorem 3.1 in [8] then states that, if u ∈ W 2,2(S,N) is stationary, then

F(r2) −F(r2) =

∫

Br2\Br1

(

|∇u|x|∂ru(x)|2
|x|2 + 2

|∂ru(x)|2
|x|2 dx

)

(68)

for almost all r1, r2 with 0 < r1 ≤ r2 ≤ 1. As a corollary to this fact we obtain
the following lemma:
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4.1. Lemma. Let u ∈ W 2,2(B1, N) be stationary and let R ∈ (0, 1). Then

∫

B1\BR

|∇uDru|2 =

∫

B1\BR

(

1

4
|∇uDu|2 + 2

|∂ru|2
|x|2

)

+
1

4

[

∫

∂Br

(

3

r
|Du|2 − 2

r
|∂ru|2 − 2(∇u

r∂ru) · ∂ru

)

dH3

]1

r=R

(69)

=

∫

B1\BR

(

1

2
|∇uDu|2 − |∇u(|x|∂ru)|2

|x|2

)

+
1

2

[

∫

∂Br

(

3

r
|Du|2 − 2(∇u

r∂ru) · ∂ru

)

dH3

]1

r=R

(70)

Remark. Lemma 4.1 can be regarded as a biharmonic counterpart of Lemma
3.5 in [10].

Proof. First notice that |∇Dru|2 = |∇∂ru|2 + |Der|2|∂ru|2 and that |Der|2 =
3

|x|2
. Moreover, a short calculation using (49) shows that

|x|∇∂ru = ∇(|x|∂ru) − Dru (71)

Using these facts we calculate

|∇Dru|2 =
∣

∣

∣

∇(|x|∂ru)

|x| − Dru

|x|
∣

∣

∣

2

+ |Der|2|∂ru|2

=
|∇(|x|∂ru)|2

|x|2 + 4
|∂ru|2
|x|2 − 2

|x|2D(|x|∂ru) · Dru

=
|∇(|x|∂ru)|2

|x|2 + 4
|∂ru|2
|x|2 − div

( |∂ru|2
|x|2 x

)

. (72)

Integrating over B1 \ BR and using (68) we obtain (69). On the other hand,
(72) clearly equals

2

(

|∇(|x|∂ru)|2
|x|2 + 2

|∂ru|2
|x|2

)

− |∇(|x|∂ru)|2
|x|2 − div

( |∂ru|2
|x|2 x

)

.

Integrating this over B1 \ BR and using (68) we obtain (70). �
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5 Appendix

5.1. Lemma. There exists a universal constant C4 such that for all R > 0
and for all radial solutions q ∈ C∞(B2R \ B̄R, Rn) of the equation ∆2q = 0 on
B2R \ B̄R, the following estimate holds:

‖q‖C0(B2R\B̄R,Rn) ≤ C4

(

|q′(R)| + |q′(2R)| + 1

R

∣

∣

∣q(2R) − q(R)
∣

∣

∣

)

. (73)

Proof. After rescaling we may assume without loss of generality that R = 1.
Since

∆q(x) = 3
q′(|x|)
|x| + q′′(|x|), (74)

we see that ∆2q = 0 is equivalent to q′ being a solution of the following third
order system:

3

t

(3f(t)

t
+ f ′(t)

)′

+
(3f(t)

t
+ f ′(t)

)′′

= 0. (75)

Denote by X ⊂ C∞(B2 \ B1, R
n) the (at most three dimensional) subspace

of solutions to (75). Denote by L : X → R
3 the functional given by Lf =

(f(1), f(2),
∫ 2

1
f). We claim that L is surjective.

In fact, let a ∈ R
3. By the direct method it is easy to see that the functional

v 7→
∫

B2\B1
|∇2v|2 has a minimizer in the class of all radial v ∈ W 2,2 satisfying

v′(1) = a1 and v′(2) = a2 and v(2) − v(1) = a3. This minimizer q satisfies the
Euler-Lagrange equation ∆2q = 0 , so its radial derivative q′ solves the ODE
(75). Thus q′ ∈ X and Lq′ = a. This proves surjectivity of L.
Hence X is three dimensional and L is in fact bijective. Since all norms on
X are equivalent and since the inverse of L is of course bounded, we conclude
that ‖f‖C0((1,2),Rn) ≤ C|Lf | for all f ∈ X. This implies the claim. �

5.2. Lemma. Let 0 < r1 < r2 ≤ 1 and assume that v ∈ W 2,2(Br2 \ B̄r1 , R
n).

Then
∫

Br2\Br1

|Dv|2
|x|2 ≤

∫

Br2\Br1

|D2v|2 +

[

1

r

∫

∂Br

|Dv|2
]r2

r=r1

. (76)

If v ∈ W 2,2(Br2 \ B̄r1 , N) then

∫

Br2\Br1

|Dv|2
|x|2 ≤

∫

Br2\Br1

|∇vDv|2 +

[

1

r

∫

∂Br

|Dv|2
]r2

r=r1

. (77)
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Proof. For v ∈ C2(A(r1, r2), R
n) we have

2
|Dv|2
|x|2 = div

( |Dv|2
|x|2 x

)

− ∂r|Dv|2
|x| . (78)

Hence if Dv is continuous up to the boundary of A(r1, r2) then

2

∫

A(r1,r2)

|Dv|2
|x|2 = −

∫

A(r1,r2)

∂r|Dv|2
|x| +

[

∫

∂Br

|Dv|2
|x|2 x · x

|x|

]r2

r=r1

= −2

∫

A(r1,r2)

(

∂r∂αv
)

· ∂αv

|x| +

[

1

r

∫

∂Br

|Dv|2
]r2

r=r1

. (79)

By density and by continuity of the trace operator, this equality remains true
for v ∈ W 2,2(A(r1, r2), R

n). We conclude that

2

∫

A(r1,r2)

|Dv|2
|x|2 ≤

∫

A(r1,r2)

|D2v|2 +

∫

A(r1,r2)

|Dv|2
|x|2 +

[

1

r

∫

∂Br

|Dv|2
]r2

r=r1

.

Absorbing the second term on the right into the left-hand side yields (76).
If v takes values in N then the first term on the right-hand side of (79) equals

−2

∫

A(r1,r2)

(

∇v
r∂αv

)

· ∂αv

|x|

because ∂αv(x) ∈ Tv(x)N for all x. Estimating as above yields (77). �
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