We derive a two-dimensional model for elastic plates as a Γ-limit of three-dimensional nonlinear elasticity with the constraint of incompressibility. The energy density of the reduced problem describes plate bending, and is determined from the elastic moduli at the identity of the energy density of the three-dimensional problem. Without the constraint of incompressibility, Γ-convergence to a plate theory was first derived by Friesecke, James and Müller. The main difficulty in the present result is the construction of a recovery sequence which satisfies pointwise the nonlinear constraint of incompressibility.

In the past decade mathematical tools have been developed to derive in a rigorous way two-dimensional reduced models from the variational problem of three-dimensional nonlinear elasticity. The fundamental notion of convergence in this context is the concept of Γ-convergence for functionals as introduced by De Giorgi [11], see also [6, 1].

A number of results for various theories including plate, shell, and membrane theories have been obtained in [12, 13, 15, 10, 8, 16, 9] (see also the references therein). In all these results, the free energy density is assumed to be smooth on an open set in the space of deformation gradients. This assumption excludes for example the important class of rubber-like materials for which the energy density incorporates an incompressibility constraint, in the sense that the energy is infinite for all deformation gradients F that do not satisfy the nonlinear condition $\det F = 1$. A membrane theory for incompressible materials was derived independently by Trabelsi [17, 18] and by the authors [5] and is relevant, for example, in the analysis of soft elasticity in thin sheets of nematic elastomers [19, 7, 3, 20].

We focus here on the derivation of a plate theory for incompressible materials. A plate theory was first formulated by Kirchhoff back in 1850; more recent justifications are based on asymptotic expansion [2]. A derivation of
Kirchhoff’s plate theory without a-priori assumptions was obtained in 2002 by Friesecke, James and Müller via Γ-convergence [10, 8]. Their derivation holds for arbitrary energy densities, with quadratic growth from below, and C^2-smoothness in a neighborhood of the minimum. Under an additional a priori assumption on the smallness of the nonlinear strain the result was derived by Pantz [15, 16]. In this paper, we address the incompressible case, where the energy density is finite and smooth only on a subset of the manifold of volume-preserving deformation gradients. Analogously to the membrane case, the main difficulty lies in the construction of a low-energy sequence of deformations which satisfy the incompressibility constraint pointwise.

We consider a thin elastic sheet of cross-section $\omega \subset \mathbb{R}^2$, and thickness $h > 0$. The nonlinear elastic energy is given by the functional $I_h : W^{1,2}(\omega \times (0, h); \mathbb{R}^3) \to [0, \infty]$ defined through

$$I_h[u] = \frac{1}{h^3} \int_{\omega \times (0, h)} W(\nabla u) \, dx \, dx_3$$

where we write $x = (x_1, x_2)$ for the in-plane variables. In turn, the energy density $W : M^{3\times 3} \to [0, \infty]$ is defined as

$$W(F) = \begin{cases} W_0(F) & \text{if } \det F = 1, \\ +\infty & \text{else}. \end{cases}$$

Here $W_0 : M^{3\times 3} \to [0, \infty]$ is frame indifferent, in the sense that $W_0(QF) = W_0(F)$ for all $Q \in SO(3)$. Moreover $W_0(F) = 0$ if $F \in SO(3)$, $W_0(F) > 0$ if $F \notin SO(3)$, W_0 is C^2 smooth in a neighborhood of the 3×3 identity matrix Id_3, and satisfies standard quadratic growth from below,

$$\frac{1}{c} |F|^2 - c \leq W_0(F), \quad \text{for some } c > 0. \quad (3)$$

The limiting theory describes only the deformation of the mid-plane of the sheet, $v : \omega \to \mathbb{R}^3$. Further, as usual in plate theories, the limiting functional is finite only on isometries, i.e., only on maps v such that $\nabla v \in O(2, 3)$ a.e., where $O(2, 3) = \{ F \in M^{3\times 2} : F^T F = Id_2 \}$, Id_2 being the 2×2 identity matrix.

The limiting energy of such an isometry is given by its bending energy, and depends on the second fundamental form $\Pi_v : \omega \to M^{2\times 2}$,

$$\Pi_v = (\nabla v)^T \nabla b_v, \quad b_v = \partial_1 v \wedge \partial_2 v.$$

Here b_v is the normal to the surface described by v (notice that, v being an isometry, b_v is a unit vector).
The limiting energy can be expressed via the elastic coefficients of the three-dimensional energy density. Consider the Hessian of W_0,
\[Q_3 = \nabla^2 W_0(\text{Id}_3), \]
which we view as a quadratic form on $\mathbb{M}^{3 \times 3}$. We show that the effective two-dimensional bending moduli are obtained by minimization of Q_3 in the out-of-plane direction, subject to the (linearized) incompressibility constraint. Precisely, let Q_2 be the quadratic form on $\mathbb{M}^{2 \times 2}$ defined by
\[Q_2(G) = \min \left\{ Q_3(G|d) : d \in \mathbb{R}^3, \quad \text{Tr}(G|d) = 0 \right\}, \]
where $G|d$ is the 3×3 matrix whose first two-by-two block is given by $G \in \mathbb{M}^{2 \times 2}$, the third column by $d \in \mathbb{R}^3$, and the remaining entries are zero.

We obtain that the limiting functional is given by
\[J[v] = \begin{cases} \frac{1}{24} \int_\omega Q_2(\Pi v) \, dx & \text{if } v \in W^{2,2}(\omega; \mathbb{R}^3), \quad \text{with } \nabla v \in O(2,3) \text{ a.e.}, \\ \infty & \text{else.} \end{cases} \]

The appropriate notion of convergence for deformation fields is, as usual for plates [8], strong convergence in $W^{1,2}(\omega \times (0,1); \mathbb{R}^3)$ of the rescaled deformations
\[U_j(x, x_3) = u(x, hx_3) \quad \text{for } x \in \omega \text{ and } x_3 \in (0,1). \]

For the limiting map $v : \omega \to \mathbb{R}^3$ the rescaling reduces to $V(x, x_3) = v(x)$.

Theorem 1 Let ω be a bounded, convex Lipschitz domain in \mathbb{R}^2, and suppose that W satisfies (2-3). Then the following assertions hold:

(i) (Compactness) For every sequence $h_j \to 0$, and every sequence $u_j \in W^{1,2}(\omega \times (0, h_j); \mathbb{R}^3)$ such that $I_{h_j}[u_j] < C < \infty$, there exists a $v \in W^{2,2}(\omega; \mathbb{R}^3)$, with $\nabla v \in O(2,3) \text{ a.e.}$, and a subsequence such that
\[U_{j_k} - \frac{1}{|\omega|} \int_{\omega \times (0,1)} U_{j_k} \, dx \, dx_3 \to V \quad \text{in } W^{1,2}(\omega \times (0,1); \mathbb{R}^3) \]
where U_j and V are related to u_j and v by (8).

(ii) (Lower bound) If the sequence u_j satisfies in addition $U_j \to V$ in $W^{1,2}$, then
\[\liminf_{j \to \infty} I_{h_j}[u_j] \geq J[v]. \]

(iii) (Upper bound) For any $v \in W^{2,2}(\omega; \mathbb{R}^3)$ with $\nabla v \in O(2,3) \text{ a.e.}$, and any sequence $h_j \to 0$ there is a sequence $u_j \in C^\infty(\omega \times (0, h_j); \mathbb{R}^3)$ such that $U_j \to V$ in $W^{1,2}$ and
\[\limsup_{j \to \infty} I_{h_j}[u_j] \leq J[v]. \]
To prove (i) and (ii), we consider the energies
\[W^k(F) = W_0(F) + \frac{1}{2} k (\det F - 1)^2, \quad (9) \]
and let, analogously to (5) and (6),
\[
\begin{align*}
Q^k_3(F) &= \nabla^2 W^k(\text{Id}_3)(F, F) = Q_3(F) + k (\text{Tr } F)^2, \\
Q^k_2(G) &= \min \{ Q^k_3(G|d) : d \in \mathbb{R}^3 \}.
\end{align*}
\quad (10)
\]
The result of [8] and the fact that \(W^k \geq W \) imply compactness (and hence (i)) and that if \(U_j \to V \) then
\[
\liminf_{j \to \infty} I_{h_j}[u_j] \geq \begin{cases}
\frac{1}{2} \int_{\omega} Q^k_2(\Pi_v) \, dx & \text{if } \nabla v \in W^{1,2}(\omega; O(2,3)), \\
\infty & \text{else.}
\end{cases}
\]
Taking \(k \to \infty \), we have \(Q^k_2 \to Q_2 \), and (ii) is proven.

To prove (iii) one needs to approximate \(v \) in energy by a sequence \(u_j \) such that \(\det \nabla u_j = 1 \) everywhere. The first step is an approximation result by Pakzad [14]. He has shown that, on convex domains, any \(W^{2,2} \) isometry can be approximated, in \(W^{2,2} \), by smooth isometries. Therefore it suffices to consider the case of smooth \(u \). We define
\[
u(x, x_3) = v(x) + \varphi(x, x_3) b_v(x) + \frac{1}{2} \varphi(x, x_3)^2 d(x). \quad (11)
\]
The function \(\varphi \) is chosen so that \(\varphi(x, 0) = 0 \) and \(\det \nabla u = 1 \) everywhere. For smooth \(v \) and \(d \), this can be done on a domain of the form \(\omega \times (-\delta, \delta) \), see [17, 18, 5]. The function \(d : \omega \to \mathbb{R}^3 \) is chosen by a suitable smoothing of the optimal \(\hat{d} \) entering (6), for \(G = \Pi_v \). Finally, \(u_j(x, x_3) = u(x, x_3 - h_j/2) \).

The estimate of the energy is, in turn, analogous to the one in [8]. Details will be presented elsewhere [4].

Acknowledgements

The work of SC was supported by the Deutsche Forschungsgemeinschaft through the Schwerpunktprogramm 1095 Analysis, Modeling and Simulation of Multiscale Problems. The work of GD was supported by the NSF through grants DMS0405853 and DMS0104118.
References

