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Abstract: We study the family of functionals

Iε[u] =
∫

Ω

1

ε
W (∇u) + ε|∇2u|2 dx,

with u : Ω ⊂ Rn → Rn representing the deformation of an elastic body, and W the
energy density, which vanishes for all matrices in K = SO(n)A ∪ SO(n)B. The energy Iε

describes an elastic material with two preferred gradients and surface tension, the so-called
two-well problem of solid-solid phase transitions. The Gamma limit of the functionals Iε

was determined, for n = 2, in [5], the crucial step in the proof is to derive rigidity estimates
in order to control the local rotations of minimizing sequences. While [5] treats the case
that W has quadratic growth at infinity, we treat here the case that W does not permit
self-penetration, i.e. W (F ) = ∞ for det F < 0. We restrict to n = 2 and exploit results of
[5].

1. Introduction.

Our investigations follow in spirit the pioneering work of Modica and Mortola who studied
in [9] functionals of the type

Jε[v] =
∫

Ω

1

ε
W (v) + ε|∇v|2 dx, (1)

with W ≥ 0, W (ξ) = 0 iff ξ ∈ {a, b}. They found that sequences vε with bounded energies
Jε[v

ε] are precompact and that limits have a particular form, namely u0(x) = aχE+b(1−χE),
where χE is the characteristic function of a set E with bounded perimeter. Moreover, the
(minimal) limiting energy of sequences uε → u0 can be characterized and is proportional to
the perimeter of E. The precise statement is that the Gamma limit of the functionals Jε is
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given by J0[u0] = k PerΩ(E) for some k ∈ R, which can be explicitly characterized as the
integral of W 1/2(t) over t ∈ [a, b].

In the theory of solid-solid phase transitions one is interested in deformations u : Ω → Rn,
and the free energy associated to a deformation depends not on the local value of u, but
rather on the strain, i.e. on ∇u. We are therefore interested in a free energy W (∇u) with
W : Rn×n → R, and the effect of the (small) surface tension is to penalize second derivatives.
We therefore investigate

Iε[u, Ω] =
∫

Ω

1

ε
W (∇u) + ε|∇2u|2 dx. (2)

The Gamma limit of these functionals for W (F ) = 0 iff F ∈ {A, B} was derived in [3]. There
are some principal new effects in the gradient theory. One is that the matrices A and B must
be rank-one connected in order to have a nontrivial limit, say A − B = a ⊗ ν. Limits u0 of
sequences uε with bounded energy then have the special structure ∇u0 = A χE +B (1−χE),
and the boundary of E consists of (subsets of) hyperplanes with normal ν. Despite this
simplification of the set of possible limits, the result is less sharp than that for Jε in the
sense that the limiting surface energy k could only be characterized implicitly as

k = inf
{

lim inf
i→∞

Iεi
[ui, Qν ] : εi → 0, ui → uν

0 in L1
}

. (3)

Here, Qν is a unit square centered in the origin with one side parallel to ν and uν
0 is a

continuous function with ∇uν
0(x) = A if x·ν > 0, and ∇uν

0(x) = B if x·ν < 0. Corresponding
to this more complex characterization of k, it was shown with an explicit example that the
optimale profile in (3) need not be one-dimensional [3].

With the above definition of k the proof of the Γ − lim inf is obtained rather directly
with scaling and covering arguments; the intricate point is in the constructive part of the
Γ − lim sup, where, in the case that more than one interface is present in the limit, the
optimal profiles of (3) must be glued together. This problem is solved in [3] by a two-fold
approximation, ’of the gradient’ and ’of the function’ on different length scales, in order to
bridge from a low-energy profile to an affine deformation.

The next step was to allow for free energies W that are consistent with the requirement
of frame-indifference in elastic materials. Our contributions in [4] and [5] led to an extension
of the above Gamma-limit result, for the case n = 2, to SO(2)-invariant free energies W ,
that is for W satisfying W (QF ) = W (F ) for all Q ∈ SO(2). The key difficulty is now to
obtain a control of the rotations. Loosely speaking, a deformation uε with low energy Iε(uε)
satisfies

∇uε(x) = Q(x)A χE(x) + Q(x)B (1 − χE(x)) + o(
√

ε) (4)

in the L2-sense. In the proof of the Γ − lim sup inequality we have to start from optimal
profiles uε as in (3), and match these low-energy functions uε with an affine function. In
particular, we have to find that the set E in (4) is large, and that the field of rotations Q(.)
is almost constant. This is done by the rigidity estimates in [4] and [5].

Here we consider a model which does not permit (local) interpenetration of matter, i.e.
an energy density W which is infinite for deformations gradients with negative determinant.
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This introduces a nonconvex constraint which generates new difficulties in the explicit con-
struction, while at the same time the proof of the rigidity estimate is somewhat simplified.
The new construction is presented in Proposition 2, which constitutes the main new result
of this paper. In Proposition 1 we give a simplified proof of the central rigidity estimate
which exploits the non-interpenetrability assumption.

2. Main result. The result presented here differs from that of [5] in its assumptions on W .

As in [5] we assume that

W : R2×2 → [0,∞] satisfies W (QF ) = W (F ) for all F ∈ R2×2, Q ∈ SO(2), (5)

W vanishes on K = SO(2){A, B}, (6)

with fixed matrices A, B ∈ R2×2, rank-one connected and such that AB−1 6∈ SO(2), since
otherwise we are in the case of only one well. In this contribution we study the growth
assumption

W continuous on {F ∈ R2×2|det F > 0}, (7)

W (F ) = +∞ if det F ≤ 0, W (F ) ≥ c1 dist2(F, K), (8)

W (F ) ≤ c2 dist2(F, K) for all F in a neighborhood of K, (9)

with constants c1, c2 > 0.
As in [3,4,5] we define k(ν) by

k(ν) = inf
{

lim inf
i→∞

Iεi
[ui, Qν ] : εi → 0, ui → uν

0 in L1
}

, (10)

and note that it is positive and satisfies k(ν) = k(−ν). Here, Qν is a unit square centered
in the origin with one side parallel to ν and uν

0 is a continuous function with ∇uν
0(x) = A

if x · ν > 0, and ∇uν
0(x) = QB if x · ν < 0, Q ∈ SO(2) being such that A − QB = a ⊗ ν

for some a ∈ R2. We shall prove that the limit functional is finite only on functions u such
that ∇u takes only values in K, and on such functions it is proportional to the length of the
interface between the region where ∇u ∈ SO(2)A and the one where ∇u ∈ SO(2)B.

I0[u, Ω] =

{

∫

J∇u
k(ν)dH1 if ∇u ∈ BV (Ω, K),

+∞ else,
(11)

where J∇u denotes the jump set of ∇u and ν the normal to it. Dolzmann and Müller [7]
have characterized the functions u that appear in the first case as local laminates that are
locally affine and have jumps only between the A and the B region. The jump set consists
locally of segments that are orthogonal to one of the (at most) two possible normal vectors
ν determined by A and B.

Theorem. Let Ω ⊂ R2 be a strictly star-shaped, bounded Lipschitz domain and let W
satisfy (5)– (9). Then

Γ − lim
ε→0

Iε = I0

with respect to the strong L1 topology.
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We call an open set Ω strictly star-shaped if there is a point x ∈ Ω such that for any
y ∈ ∂Ω the segment (x, y) is contained in Ω.

The Γ− lim inf inequality follows from the one of [5], which in turn was derived, following
[3,4], combining a compactness result and the definition of k(ν) of (10).

We therefore focus on the proof of the Γ − lim sup. In this part of the proof we are
given u0 with several interfaces and have to construct sequences uε that converge to u0 in
L1 with optimal energy. In the case that u0 has only a single interface, we can use the
sequence uBA

ε that appears in (10) (but we still need to show that the result does not depend
on the sequence εi → 0, see [4]). The intricate part is to deal with u0 with more than
one interface. Then, in the construction of a low energy sequence, we can again use locally
around each interface the sequence uBA

ε (or its rotated version uAB
ε (·) = −uBA(−·), but

between the interfaces we have to match the two approximations. This construction can be
done if we can modify the functions uBA

ε so that they become affine at some distance from
the interface. Precisely this statement is verified in Proposition 2, which is the main result
of this contribution.

Note that we formulate Proposition 2 for low energy maps u. In the proof of the theorem
we apply the proposition to the restriction of the maps uBA

ε to the part D = {x : x·ν > 1/2}.
Since the energy of uBA

ε is concentrated along the boundary, the energy in the part D of
the square is small. Proposition 2 yields that we can replace u with another sequence of the
same limiting energy which is affine near the upper boundary. The construction near the
lower boundary is analogous.

3. Segment rigidity.

The principal idea in the proof of Proposition 2 is to construct a grid such that the
function u is approximately an isometry on the vertices. Once this is shown, the linear
interpolate can be used to construct another function ũ which is affine at the boundary and
which has the same limiting energy as u. The construction of the grid is done by constructing
first a reference grid and then choosing vertices in the neighborhoods of the reference vertices
in order to have rigid edges (or segments). This local construction step is made possible by
Proposition 1 below.

For notational simplicity we formulate the statement only for the case A = Id, the general
form can be obtained with a change of variables. The geometry is illustrated in Figure 1.

Proposition 1. We study the following geometry: With r > 0 and α ∈ (0, 1/8) we
consider x0, y0 ∈ Ω ⊂ R2 such that B((x0 + y0)/2, r) ⊂ Ω and r < |x0 − y0| < 2r − 4αr.
Let furthermore a matrix B ∈ R2×2 \ SO(2) be given and a function φ : R2×2 → R̄ with
φ(F ) ≥ c̄ dist2(F, SO(2)).

Then for every θ > 0 there are η and c (depending only on α, B, c̄ and θ) such that the
following holds. For every u ∈ C1(Ω,R2) with det∇u > 0 and

1

r2

∫

Ω
φ(∇u)dx +

1

r

∫

Ω
|∇φ(∇u)| ≤ η (12)

there is a subset of (x, y) ∈ B(x0, αr) × B(y0, αr) with measure at least 1 − θ the total such
that

1 − cε ≤ |u(x) − u(y)|
|x − y| ≤ 1 + cε (13)
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Figure 1: Sketch of the geometry in Proposition 1. We find balls around x0 and y0, such
that many x and y in these balls have the desired properties. The vectors y − x all have
approximately the same direction. Figure from [5].

where

ε =
1

r2

∫

Br

dist(∇u, SO(2) ∪ SO(2)B)dx . (14)

Proof. Loosely speaking, inequality (12) provides that u is mostly in the A-phase, i.e.
on the larger part of the domain ∇u is closer to SO(2)A than to SO(2)B. Therefore, on
most of Ω, ε controls indeed the distance of ∇u from SO(2)A = SO(2), and we can expect
that lengths are indeed shortened. Performing the same argument on the inverse of u (which
exists, since u has positive determinant), lengths are approximately preserved.

We divide the proof in several steps. First we show that restricting the function to a
slightly smaller ball it is invertible. Then we we define a ’bad’ set ΩLG of points where ∇u
is far from a rotation, and show that ΩLG is small and has small perimeter. By continuity,
the gradient is still good on the boundary of the ’bad’ set, hence the image of its boundary
is also small. This shows that for a large fraction of the possible pairs (x, y), both segments
[x, y] and [u(x), u(y)] do not intersect the ’bad’ set (or its image). A straightforward line
integration concludes the proof. Without loss of generality we can assume r = 1 (by scaling),
x0 + y0 = 0 (by a translation), and Ω = B(0, 1) (restricting u).

Step 0. On a smaller domain, u is invertible. In order to derive the upper bound in (13)
we connect the points x and y with the segment [x, y] and calculate the length of the curve
u([x, y]). The lower bound in (13) requires that we consider the segment [u(x), u(y)] in the
image and the curve in the pre-image u−1([u(x), u(y)]). In this step of the proof we make
sure that we can indeed invert u on such segments.

The quantitative rigidity estimate of Friesecke, James and Müller [8] asserts that for each
function u there is a rotation Q ∈ SO(2), such that the L2 distance of ∇u to Q is controlled
by the L2 distance of ∇u to SO(2). We combine this result with our assumptions on φ and
find ∫

Ω
|∇u − Q|2dx ≤ c

∫

Ω
dist2(∇u, SO(2))dx ≤ c

∫

Ω
φ(∇u)dx ≤ cη .

By the Poincaré inequality, u is close to an isometry I(x) = Qx + b,

∫

Ω
|∇u −∇I|2 + |u − I|2 dx ≤ cη . (15)
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In particular, we find a radius r′ ∈ (1 − α/2, 1) such that

∫

∂B′

|∇u −∇I|2 + |u − I|2 dH1 ≤ cη ,

where B′ = B(0, r′). By the embedding of W 1,2(∂B′) in C0(∂B′), we have

|u(x) − I(x)| < cη1/2 for all x ∈ ∂B′ . (16)

Therefore, u(∂B′) is uniformly close to a circle. We conclude that u(B′) contains a ball
B′′ = B(I(0), r′′) with r′′ ≥ r′ − cη1/2. Furthermore, the winding number of u : ∂B′ → R2 is
one for each point in B′′. From det∇u > 0 we conclude that each point in B′′ has exactly
one pre-image in B′. Decreasing r′ further by at most α/2 we find a new ball B̃′ whose
image is contained in B′′, then u is invertible as a map

u : B̃ → u(B̃).

Repeating the same arguments, for small η > 0, the images u(B(x0, αr)) and u(B(x0, αr))
are contained in B̃. Since B̃ is convex, we always find a unique pre-image for segments
[u(x), u(y)] with x ∈ B(x0, αr) and y ∈ B(y0, αr).

Step 1. Definition of the bad set ΩLG. By the coarea formula for BV functions, from (12)
we obtain

η ≥ |∇φ(∇u)|(Ω) =
∫

R

PerΩ({x ∈ Ω : φ(∇u(x)) ≥ t})dt .

Therefore for any fixed c1 > 0 there is c2 ∈ (c1/2, c1) such that the set

ΩLG = {x ∈ B′ : φ(∇u(x)) ≥ c2}

satisfies the bound

H1 (∂ΩLG ∩ B′) = PerB′(ΩLG) ≤ 1

c1
η .

We choose c1 small enough so that φ(F ) ≤ c1 implies the inequality dist(F, SO(2)) <
min(dist(F, SO(2)B), 1/4). The estimate of the first integral in (12) assures additionally
|ΩLG| ≤ cη.

The gradient ∇u is uniformly close to SO(2) on Ω \ ΩLG by definition. By continuity of
∇u this holds also on the boundary. In particular, u(∂ΩLG) is rectifiable and

H1 (u(∂ΩLG ∩ B′)) ≤ cη .

By the isoperimetric inequality, u(ΩLG) has also small area, bounded again by cη.

Step 2. Choice of x and y. In the following we show that several properties are satisfied
by a large fraction of the possible choices of x and y in the balls B(x0, α) and B(y0, α).
We show that each of them holds outside of a small set, and since we consider less than 10
properties, all of them will hold outside of a single, small set, whose area tends to zero as
η → 0. Therefore for any θ we can choose η sufficiently small, so that the thesis holds for
sufficiently many points.
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First, since |ΩLG| ≤ cη we have that most points do not belong to it. We now show that
for most pairs (x, y)

∫

[x,y]
dist(∇u, SO(2))dH1 ≤ cε , (17)

where c depends on α and θ. We first consider the integral of dist(∇u, K). Its integral on
the entire domain is controlled by ε, hence – choosing a suitable c – on a large fraction of
the lines through the domain it is controlled by cε (to formalize this step it helps to prove
it first by prescribing the direction of the segment). At the same time, since ∂ΩLG is small,
few lines can intersect it. But since x and y are outside of ΩLG, for most choices the entire
segment [x, y] is outside ΩLG. Since outside ΩLG we have dist(∇u, SO(2)) = dist(∇u, K),
this concludes the proof of (17).

Now we consider analogously the segments [u(x), u(y)] in the image. Since u(∂ΩLG ∩B′)
has small length, most segments [ux, uy] do not intersect u(∂ΩLG ∩ B′) (we denote by ux a
generic point in u(B(x0, α)), and analogously uy). Outside ΩLG the determinant of ∇u is
bounded from above and away from zero, hence the measure of exceptional pairs (ux, uy)
in the image can be compared with the measure of exceptional pairs (x, y) with u(x) = ux

and u(y) = uy. We find that for most pairs (x, y) the segment S = [u(x), u(y)] does not hit
u(ΩLG). By Step 0, given S, we find a curve γxy : [0, 1] → B \ ΩLG such that u ◦ γxy is a C1

monotonic parametrization of S.

It remains to show that for most (x, y) the curve γxy carries energy of order ε. We define
g : R2 → R by

g(z) = dist(∇u, K)(u−1(z)) = f(u−1(z)) ,

and find many segments [ux, uy] such that integrals of g over [ux, uy] are of order ε. Therefore,
as above, also for most pairs (x, y), integrals of g over [u(x), u(y)] are of order ε (we use that
away from ΩLG the Jacobian determinant is close to one). We conclude that for most pairs
(x, y)

∫

γxy

f dH1 ≤ c
∫

[u(x),u(y)]
g dH1 ≤ cε . (18)

Step 3. Length estimates. We have shown that
∫

[x,y]
dist(∇u, SO(2)) dH1 ≤ cε and

∫

γxy

dist(∇u, SO(2)) dH1 ≤ cε ,

where γxy is a C1 curve joining x and y, with u ◦ γxy being a monotonic parametrization of
the segment [u(x), u(y)]. The first condition implies

|u(x) − u(y)| ≤
∫

[x,y]
|∇τu| dH1

≤ |x − y| +
∫

[x,y]
dist(∇u, SO(2))dH1

≤ |x − y| + cε ,

where ∇τ denotes the tangential derivative. Since u is a one-to-one map of the curve γxy

onto the segment [u(x), u(y)],

|u(x) − u(y)| =
∫

γxy

|∇τu| dH1
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≥ H1(γxy) −
∫

γxy

dist(∇u, SO(2))dH1

≥ |x − y| − cε .

This concludes the proof of Proposition 1. q.e.d.

4. Construction of a recovery sequence.

4.1 Construction of rigid grids.

Proposition 2. Let Ω = (−d, d)× (−l, l) be a rectangle in R2. Then there are constants
c, η, ε0 > 0 such that for every 0 < ε < ε0 and every function u : Ω → R2 with

Iε[u, Ω] =
∫

Ω

1

ε
W (∇u) + ε|∇2u|2 dx ≤ η (19)

there exists a function ũ : Ω̃ → R2 on Ω̃ = (−d/4, d/4) × (−l, l) with

Iε[ũ, Ω̃] ≤ cη (20)

which is affine in (−d/4, d/4) × (l/2, l).

The proof is based on the segment rigidity of Proposition 1. We first observe that
∇u ∈ W 1,2 together with det∇u > 0 a.e. implies ∇u ∈ C0 by a result of Vodop’yanov and
Gol’dshtein, [10], see also Šverák [11], hence the smoothness assumption in Proposition 1 is
satisfied. Since we are dealing with an interior estimate, by restricting to a slightly smaller
domain we can also assume that |∇u| ≤ M and det∇u > 1/M for some M > 0.

The function φ used in Proposition 1 is constructed from the geodesic distance dW (F, G)
induced on R2×2 by the potential W ,

dW (F, G) = inf
{
∫ 1

0

√

W (g(s))|g′(s)|ds : g ∈ C0([0, 1],R2×2),

g(0) = F, g(1) = G, g piecewise C1
}

. (21)

We observe that dW (F, A) = 0 iff F = QA for some Q ∈ SO(2), and the same for B. If
AB−1 6∈ SO(2), since W is positive away from K we get dW (B, A) > 0. Further, the function
dW (·, A) is C1 smooth and globally Lipschitz on the set of matrices {F : |F | ≤ M and

det F > 1/M} in which ∇u takes values, and its derivative satisfies |∇dW (·, A)| ≤
√

W (·).
Therefore

∫

Ω
|∇dW (∇u(x), A)| ≤

∫

Ω

√

W (∇u(x))
∣

∣

∣∇2u(x)
∣

∣

∣ dx ≤ 1

2
Iε[u, Ω] .

This implies that dW (∇ui(x), A) is uniformly bounded in W 1,1. We consider now the case
that A is the majority phase of u. We set

φ(x) := dW (∇u(x), A),

and infer ‖φ‖W 1,1 ≤ cη. By a change of variables we can assume A = Id. As in [4], Lemma
4.5, we find ζ0 in (0, l/2) with

1

δ

∫

(−d,d)×(ζ0−δ,ζ0)
φ + |∇φ| ≤ cη (22)
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Figure 2: The reference grid, for a rectangle with aspect ratio 3.

for all δ ∈ (0, l/2). This estimate will enable us to apply Proposition 1 to u on small subsets.
We note here that φ ≥ c̄dist2(., K) is satisfied for some positive c̄, since W has quadratic
growth by (8).

Construction of the reference grid. We construct a triangular grid as indicated in Fig-
ure 2. Precisely, we first map affinely the domain into the rectangle (0, 1) × (0,

√
3), then

construct on this rectangle a triangular grid which refines towards the top face and only
contains triangles which are either equilateral or have angles of 30, 60 and 90 degrees, then
transform back. The resulting grid refines towards the line Γ0 = (−d, d)×{ζ0} and contains
triangles whose angles are uniformly bounded away from zero (with a bound depending on
the aspect ratio l/d). The vertical spacing between the grid lines is given, at stage k, by
hk = c2−k, where c is a (universal) geometric constant, and all lengths at refinement stage k
are uniformly controlled from above and below by hk (with constants depending on l/d).

For later use we now show that (22) implies a local control of φ in L1 with the optimal
scaling. We consider an interval Yk = (ζ0 − hk, ζ0) and rewrite (22) as

∫

Yk

e(ζ) dζ ≤ cηhk , where e(ζ) =
∫ d

−d
φ(ξ, ζ) + |∇φ(ξ, ζ)| dξ .

Hence there is ζk ∈ Yk such that e(ζk) ≤ cη. The one-dimensional embedding W 1,1 ⊂ L∞

yields that φ(·, ζk) is bounded by c′η pointwise on (−d, d). The Poincaré inequality for the
square K = (ξ, ξ +hk)× (ζ0 −hk, ζ0) = (ξ, ξ +hk)×Yk yields, for arbitrary ξ ∈ (−d, d−hk),

∫

K
φ dx ≤ h2

k‖φ(·, ζk)‖L∞(−d,d) + hk

∫

K
|∇φ| dx ≤ cηh2

k. (23)

Construction of the perturbed grid. Our aim is to apply Proposition 1 to pairs of neigh-
boring vertices with α = 1/10. Since the assertion of Proposition 2 is a statement for
a subdomain, we can restrict the grid such that for each vertex vm of level k, the ball
Bm = B(vm, αlk) is contained in Ω. Let n = (m, m′) denote one pair of neighboring vertices
at level k. Then by (23) we can apply Proposition 1 to it, provided that η is chosen appro-
priately. Hence there are many pairs (wm, wm′) ∈ Bm×Bm′ such that the segment [wm, wm′ ]
is rigid.
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We now choose inductively one point wm in each Bm. We start by saying that all points
of all balls are possible choices in step 0. At step m we set wm as one of the possible choices
in step m in the ball Bm with the additional condition that wm forms a rigid pair with many
points of all neighboring balls Bm′ with m′ > m. This is possible provided that in Bm there
are many possible choices in step m, since there is only a finite number of neighbors. The set
of possible choices in step m+1 then consists of the possible choices in step m without those
w ∈ Bm′ such that m′ > m is a neighbor of m, but (w, wm) is not a rigid pair. Since each
point has at most seven neighbors, we reduce the possible choices of each ball Bm finitely
many times by a small set, whence at all steps there remain many possible choices in each
ball where the choice has not been made yet.

4.2 The matching function in the impenetrable case.

With inequalities (22) and (23) we have verified the smallness assumptions of Proposition
1 for every edge en = [x, y] of level k. Concerning the error (defined in (14)), we use a
rectangle Rn = (ξ, ξ + hk−1) × Yk−1 of level k which contains en and obtain

∣

∣

∣

∣

∣

|u(x) − u(y)|
|x − y| − 1

∣

∣

∣

∣

∣

≤ c
1

h2
k

‖dist(∇u, K)‖L1(Rn) ≤ c
1

hk

‖dist(∇u, K)‖L2(Rn). (24)

As a first step in the construction of ũ we define a linear interpolate v by setting v(x) =
u(x) for each vertex x of the perturbed grid, and v affine on each triangle Tm of the perturbed
grid. By (24), u is approximately length-preserving on edges, therefore v is close to a rigid
motion on each triangle. In terms of inequalities we find that for each triangle Tm there
exists a rotation Qm ∈ SO(2) such that

|∇v(Tm) − Qm| ≤ c
1

hk

3
∑

i=1

‖dist(∇u, K)‖L2(Kni
), (25)

where ∇v(Tm) is the value of ∇v on Tm, and the Kni
are rectangles of level k as above which

cover the three edges eni
of Tm. We note that v has some of the properties that we require

from ũ in Proposition 1. It is identical to u on the line (−d/4, d/4)×{ζ0}, it is affine on the
line (−d/4, d/4) × {ζ0 − h1}, and the bulk part of the energy is comparable to that of the
function u. Yet we can not use v as the function ũ, since v is not a W 2,2-function and has
therefore an infinite surface energy.

Definition of the W 2,2-function ṽ. We will construct ṽ as a piecewise polynomial function
interpolating values of v and of ∇v. In order to define ṽ we use interpolation defined by the
Argyris triangle, which is well-known in numerical analysis (other names are Bell’s triangle
and 21-degree of freedom triangle, see [1]). We will now briefly recall the construction of
this interpolation on triangles.

Given a triangle T we denote the corners by (pi), i = 1, ..., 3, and the edges by eij , i 6= j,
i, j ∈ {1, ..., 3}. To each edge eij we associate the mid-point pij = (pi + pj)/2. We can now
define a polynomial interpolation F : T → R of given point-values as follows. Prescribing
F , ∇F , and ∇2F in the corners (pi) (18 degrees of freedom), and additionally the normal
derivatives ν · ∇F of F in the mid-points pij (3 degrees of freedom) we find a polynomial F
of degree 5 with these point-values. Indeed, there holds:

Lemma 1. The Argyris interpolation has the following properties.
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Figure 3: The Argyris triangle

a) Given a triangle T and 21 point-values as above, there exists a unique polynomial F
of degree 5 having the prescribed point-values.

b) For point-values ξi ∈ R, i = 1, ..., 3, and ζi ∈ R2, i = 1, ..., 6, let F : T → R be the
polynomial of degree 5 satisfying

F (pi) = ξi, ∇F (pi) = ζi, ∇2F (pi) = 0 ∈ R2×2, i = 1, ..., 3.

ν · ∇F (p23) = ν · ζ4, ν · ∇F (p31) = ν · ζ5, ν · ∇F (p12) = ν · ζ6.

The map R15 ∋ (ξ, ζ) 7→ F ∈ C2(T ) on a triangle with diameter h has the following
property. We set F̄ to be the affine interpolation of the values ξi and ζ0 := ∇F̄ . There
holds

‖∇2F‖C0 ≤ c
1

h
sup{|ζk − ζl| : k, l = 0, ..., 6}. (26)

The constant c depends only on bounds for the aspect ratio of T .

c) Let (Tm) be a triangulation of D =
⋃

m Tm and let point-values be defined on vertices
and mid-points of edges. Then the piece-wise polynomial Argyris interpolation yields
a C1-function on D.

Proof. In order to prove a) it suffices to show that the linear space of polynomials
of order 5 in two variables has exactly dimension 21, and that the 21 linear conditions
imposed by the point values are linearly independent. Analogously, c) follows from the same
argument done for the restriction of a generic polynomial to the side which is common to
two neighboring triangles. For details we refer to [1], Theorem 2.2.11 and Theorem 2.2.13.
For the proof of b) we first note that (ξ1, ..., ξ3, ζ1, ..., ζ6) and (ξ1, ζ0, ..., ζ6) are equivalent sets
of parameters. In the second set of parameters, the left hand side of (26) is independent
of ξ1, and independent upon adding a constant to all ζj. Hence ∇2F depends only on the
indicated differences ζk − ζl. Since both sides scale as h−1 under dilations of the triangle by
a factor h, it suffices to consider triangles of unit diameter. After this reduction of the proof
we can now define c > 0 to be the supremum of ‖∇2F‖C0 over all ζ with |ζk − ζl| ≤ 1 and
over all triangles with unit diameter and uniformly bounded aspect ratio. By continuity of
‖∇2F‖C0 in this finite number of parameters, we find a finite supremum c. q.e.d.
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We will now define ṽ on the rigid (the perturbed) grid. We will use the function ∇v that
was already constructed as the piecewise linear interpolation. Since ∇v has jumps along
edges, the function ∇v does not directly provide us with values in vertices p and in mid-
points q of edges. But we can associate to each p one of the (at most 7) triangles that have p
as a corner, and we can associate to the mid-point q of each edge e one of the 2 triangles that
have e as an edge. We can now define point-values of a function ṽ by setting ṽ(p) = v(p),
∇ṽ(p) = ∇v(T ) in vertices, and ∇ṽ(q) = ∇v(T ) in mid-points, where in both definitions
∇v is evaluated in the associated triangle T to find ∇v(T ). We define the function ṽ on
each triangle as the interpolation of these values as in part b) of Lemma 1 (in particular,
we consider vanishing second gradients in vertices and use only the normal derivative in
mid-points). Part a) of Lemma 1 yields the existence of ṽ and part c) the property ṽ ∈ C1,
hence ṽ ∈ W 2,2((−d/4, d/4) × {ζ0 − h1}).

Calculation of energies of ṽ.

1) The bulk energy. The estimate for the energy W (∇ṽ) is obtained from the growth
condition from (9) in two steps. We first show that ∇v is uniformly close to SO(2), which
permits us to use (9). This first step is done starting from the local estimate (23) on φ. In a
second step, we show that the distance of ∇v from SO(2) is, in an L2 sense, small compared
to ε. This will be based on using the smallness of the original bulk energy W (∇u), and will
lead to the desired estimate.

We start by combining the ∇v-estimate of (25) with the φ-estimate of (23), to obtain
the pointwise inequality

|∇v(Tm) − Qm| ≤ c
1

hk

(
∫

S
φ dx

)1/2

≤ c
√

η (27)

for an appropriate choice of S. We remark that this is a weaker estimate (by a factor ε−1/2)
in a stronger norm (L∞ instead of L2) than the one that can be obtained combining (25)
with the assumption on W (∇u).

Analogously, we can control pointwise the difference between the rotations Qm and Qm′

of two neighboring triangles Tm and Tm′ with common edge en = [x, y]. Since v|Tm
and v|Tm′

coincide on the direction ēn of the segment en, ∇vm · ēn = ∇vm′ · ēn, also the rotations on
both sides are comparable up to an error as in (25).

|Qm − Qm′ | ≤ c
1

hk

5
∑

i=1

‖dist(∇u, K)‖L2(Kni
), (28)

where now ni are related to the five distinct edges of the two triangles Tm and Tm′ . Note
that the estimate can be iterated to triangles Tm and Tm′ which have only one vertex in
common. In the estimate (28) we then sum over the seven distinct edges of three triangles.
We conclude from (27) and Part b) of Lemma 1 that also the C1-function ∇ṽ is pointwise
close to SO(2). By (9), we can therefore always compare W with dist(., SO(2))2 and find

∫

1

ε
W (∇ṽ)dx ≤ c

1

ε

∫

|dist(∇ṽ, SO(2))|2dx

≤ c
1

ε

∫

|dist(∇v, SO(2))|2dx + c
1

ε

∫

|dist(∇u, K)|2dx ≤ cη. (29)
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2) The surface energy. We first draw conclusions from the small surface energy of u. Each
triangle Tm of level k is contained in a rectangle Km of level k. On Km we can approximate
u by the affine function Fm defined by the averages of u and ∇u. The Sobolev embedding
yields

‖u − Fm‖2
L∞(Km) +

∫

Tm

|∇u −∇Fm|2dx ≤ ch2
k

∫

Km

|∇2u|2dx. (30)

Since u is continuous, this is a pointwise estimate for u− Fm in the vertices of Tm. But v is
defined on Tm by the values of u in the vertices, therefore

|∇v(Tm) −∇Fm| ≤ ‖u − Fm‖L∞(Km)
1

hk
≤ c

(
∫

Km

|∇2u|2dx
)1/2

. (31)

The two affine maps Fm and Fm′ on neighboring triangles can be compared again by second
derivatives of u and we find

|∇v(Tm) −∇v(Tm′)| ≤ c

(

∫

Km∪Km′

|∇2u|2dx

)1/2

. (32)

We can now use Lemma 1b) to calculate in a fixed triangle Tm0
of level k with neighbors

Tmi
, i ≥ 1,

∫

Tm0

ε|∇2ṽ|2dx ≤ εh2
k c2 sup

i≥1

|∇v(Tm0
) −∇v(Tmi

)|2
h2

k

≤ cε
∑

i=1

∫

Kmi

|∇2u|2dx.

Summing now over all triangles m0 we find as estimate for the surface energy

∫

ε|∇2ṽ|2dx ≤ c
∫

ε|∇2u|2dx ≤ cη. (33)

This is the desired estimate for ṽ.

3) The function ũ.
The function ṽ is of class W 2,2 and has the correct scaling of the energy. But, still, we have

not found the desired function ũ, since ṽ is not affine on the segment (−d/4, d/4)×{ζ0−h1}
contained in the triangle To. We define ũ as

ũ = ṽ on Ω \ To,

ũ = v near (−d/4, d/4) × {ζ0 − h1},

and interpolate between these values. The interpolation increases the energy at most by cη
by calculations as in step 2) above. This concludes the proof of Proposition 2. q.e.d.
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