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The singularly perturbed two-well problem in the theory of solid-solid
phase transitions takes the form

Iε[u] =

∫
Ω

1

ε
W (∇u) + ε|∇2u|2,

where u : Ω ⊂ R
n → R

n is the deformation, and W vanishes for all
matrices in K = SO(n)A ∪ SO(n)B. We focus on the case n = 2
and derive, by means of Gamma convergence, a sharp-interface limit
for Iε. The proof is based on a rigidity estimate for low-energy func-
tions. Our rigidity argument also gives an optimal two-well Liouville
estimate: if ∇u has a small BV norm (compared to the diameter of
the domain), then, in the L1 sense, either the distance of ∇u from
SO(2)A or the one from SO(2)B is controlled by the distance of
∇u from K. This implies that the oscillation of ∇u in weak-L1 is
controlled by the L1 norm of the distance of ∇u to K.
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1 Introduction

In the gradient theory of solid-solid phase transitions one considers energies
of the form

Iε[u,Ω] =

∫
Ω

1

ε
W (∇u) + ε|∇2u|2dx (1.1)

where u : Ω ⊂ R
n → R

n stands for the deformation, and the free energy
density W (F ) is nonnegative and satisfies

W (F ) = 0 iff F ∈ K = SO(n)A ∪ SO(n)B .

Here A and B are two fixed, rank-one connected invertible matrices in R
n×n

and SO(n) is the set of rotations in R
n [4, 10, 28, 32, 6]. In this paper we

restrict to two spatial dimensions and focus on the frame–indifferent case,
where W (QF ) = W (F ) for all Q ∈ SO(2) and all F ∈ R

2×2.
In the limit ε → 0 one expects that ∇u takes values only in K, and

that the energy is proportional to the length of the interfaces between the
region where ∇u ∈ SO(2)A and the one where ∇u ∈ SO(2)B. The notion
of convergence appropriate for this kind of limiting problems is Gamma con-
vergence, as developed by De Giorgi and his school in the 70s ([15]; see also
[14, 8]). Whereas the functionals which arise in fluid-fluid phase transitions,
of the form

Jε[v,Ω] =

∫
Ω

1

ε
W (v) + ε|∇v|2 dx, (1.2)

have been thoroughly studied [31, 19, 29, 7, 34, 5], the gradient structure
characteristic of problems in elasticity has proven more difficult to under-
stand. A Gamma convergence result for the functional Iε was obtained,
under the assumption that W vanishes only on two matrices (i.e. neglecting
rotational invariance), in [12]. Inclusion of rotational invariance within a lin-
earized setting was achieved, in two dimensions, in [13]. Here we present the
first result which fully includes rotational invariance in a nonlinear setting
(Theorem 3.1).

The proof of Gamma convergence for the SO(2)-invariant problem
presents two new difficulties. The first is in deriving compactness, where the
control of oscillations between the wells (obtained via the classical Modica-
Mortola argument) has to be combined with a rigidity argument to control
oscillations within the wells. The structure of limiting deformations is then
determined through the characterization of functions u with ∇u ∈ BV (Ω, K)
obtained by Dolzmann and Müller [16] (see Proposition 3.2). The second dif-
ficulty lies in deriving the upper bound, which requires the construction of
sequences of optimal energy approximating a limit which has multiple flat
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interfaces. This is done combining a choice of an optimal sequence for each
interface with an interpolation, which is made possible by an optimal esti-
mate for the deviation of low-energy deformations from affine maps in H1/2

on lines (Proposition 3.4). This estimate permits to extend the function with
small H1 norm (Proposition 3.5). The key ingredient in the proof of the H1/2

rigidity is a two-well rigidity result on segments (Proposition 2.2).
The rigidity of segments permits also to obtain an optimal estimate on

the amount of minority phase present away from interfaces. We show (The-
orem 2.1) that if |∇2u|(Ω) is small compared to dist(Ω′, ∂Ω), where Ω′ is a
connected subset of Ω, then

min
J∈{A,B}

‖dist(∇u, SO(2)J)‖L1(Ω′) ≤ c‖dist(∇u,K)‖L1(Ω) . (1.3)

A variation of the one-well rigidity estimate by Friesecke, James, and Müller
[21] shows that (1.3) implies an equivalent control on the weak-L1 norm of
∇u− F , for some F ∈ K (Proposition 2.6). This improves a previous result
by Lorent [30], who under the additional assumptions that u is bilipschitz and
detA = detB obtained that the minimum of ‖dist(∇u, F )‖L1(Ω′) over F ∈ K
is controlled by a power of ‖dist(∇u,K)‖L1(Ω). In the limiting case where
u satisfies ∇u ∈ K a.e. with ∇2u ∈ BV , Dolzmann and Müller [16] have
proven that u has locally the structure of a laminate. Our result constitutes
an optimal quantitative version of this rigidity result, and we expect that
it will be useful in the derivation of lower bounds for singularly perturbed
two-well problems.

The geometric arguments used here to obtain two-well rigidity are exten-
sions of previous ideas used by John [24] and Kohn [27] to obtain single-well
rigidity results, of those used by Dolzmann and Müller [16] for the rigid case
∇u ∈ BV (Ω, K), and of those used in our previous work [13] on the geo-
metrically linear problem. Our approach is rather different from the PDE
approach which recently permitted to Friesecke, James, and Müller [21] to
obtain the quantitative one-well rigidity estimate.

In Section 2 we present the geometric rigidity arguments, and in Section
3 the Gamma convergence, including the H1/2 rigidity. Section 3 depends
only on the segment-rigidity presented in Subsection 2.2, not on the rest of
Section 2.
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2 Two-well rigidity in L1 and segment rigidity

2.1 Introduction

A function u : Ω → R
2 whose gradient takes values in SO(2) is affine (on

connected sets), as was shown by Liouville. If ∇u is close to SO(2) in an
Lp sense, then u is approximately affine in W 1,p, as was recently proven by
Friesecke, James, and Müller [21] (see Section 2.4 for details). We are here
interested in analogous two-well results, i.e. on functions u : Ω → R

2 whose
gradient is close to K = SO(2)A ∪ SO(2)B.

If the two wells SO(2)A and SO(2)B are rank-one connected, in the sense
that there are Q,R ∈ SO(2) such that rank(QA − RB) = 1, then there are
piecewise affine functions with ∇u ∈ K which are not globally affine. For
example, if QA−B = a⊗ ν, let χ : R → R be any Lipschitz function whose
derivative takes only the values 0 and 1, and define

u(x) = Bx+ aχ(x · ν) .

Then ∇u ∈ K everywhere; ∇u can oscillate on an arbitrarily fine scale
between QA and B, but all interfaces are straight (see Figure 2.1(a) for an
example). In general, given two matrices A and B gradient fields taking
values in K can jump only across planar interfaces, and the normal to the
interface ν can take at most two values (we neglect here the degenerate case
AB−1 ∈ SO(2)). This corresponds to the fact that rank(QA−B) = 1 has at
most two solutions for Q ∈ SO(2). Each solution QA−B = a⊗ ν is called a
rank-one connection between the two wells SO(2)A and SO(2)B, see [4, 32].
The above construction shows that, if at least one rank-one connection is
present, no global rigidity result can be expected without assuming some
bound on the surface energy. A different picture arises for the case without
rank-one connections (i.e. when rank(QA − B) = 1 has no solutions for
Q ∈ SO(2)), see Chaudhuri and Müller [9].

We consider the case that ∇u is close to K and the distributional second
gradient ∇2u is small. The second assumption corresponds to interfaces
being short, i.e. to the situation illustrated in Figure 2.1(b). It turns out
that isolated regions of the minority phase cannot be realized without a
significant cost in terms of the two-well energy

∫
dist(∇u,K)dx. We will

show that, upon taking a subdomain, the amount of minority phase can be
estimated in terms of the two-well energy alone. This implies that one can
replace the two-well energy with a single-well energy (in a subdomain). In
applications it is useful to combine this with the corresponding single-well
rigidity estimates discussed in Section 2.4 below.
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(a) (b)

Figure 2.1: (a): There are nontrivial gradient fields ∇u which take values
in K. They have a laminar structure, where interfaces are straight lines.
(b): If the total length of the interfaces is small, and ∇u is close to K,
one can have minority regions close to the boundary, and minority islands
inside. The latter necessarily have curved boundaries, and are penalized also
by the elastic energy. Minority regions near the boundary can have straight
boundaries and zero elastic energy.

We first give a precise statement and then sketch the main ideas of the
proof. The proof of Theorem 2.1 is then contained in Sections 2.2 and 2.3.

Theorem 2.1. Let A and B ∈ R
2×2 have positive determinant, Ω′ ⊂⊂ Ω ⊂

R
2 be two bounded Lipschitz domains, with Ω′ connected. Then there are

constants c0, c1, c2, and η0 such that for any u ∈W 1,1(Ω,R2) with ∇u ∈ BV
which satisfies ∫

Ω

|∇2u| ≤ η0(A,B)dist(Ω′, ∂Ω) (2.1)

one has

min
J∈{A,B}

∫
Ω′

dist(∇u, SO(2)J)dx ≤ c0

∫
Ω

dist(∇u, SO(2){A,B})dx , (2.2)

where c0 = c0(Ω,Ω
′, A,B). Further, if∫

Ω

dist(∇u, SO(2){A,B})dx ≤ c2(A,B)dist2(Ω′, ∂Ω) (2.3)

then (2.2) holds with c0 = c1(A,B), independent of the domains.

A first result in this direction was obtained by Lorent [30] for the case
that detA = detB and u is bilipschitz (i.e. Lipschitz with Lipschitz inverse).
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Precisely, Lorent has shown that, on special domains, (2.1) implies

min
J∈K

∫
Ω′
|∇u− J |dx ≤ c

[∫
Ω

dist(∇u, SO(2){A,B})dx
]γ

.

Here γ = 1/800 and the constants depend on the Lipschitz norms of u and
u−1. For the case that A and B have no rank-one connections (incompatible
wells) an L2 version of this result was proven by Chaudhuri and Müller [9];
their result does not require assumption (2.1) on the higher derivative. In
(2.1) and below se use the notation∫

Ω

|∇ψ| = sup

{∫
Ω

ψ divϕdx : ϕ ∈ C1
0(Ω,R

n) , |ϕ| ≤ 1

}
.

In order to sketch the main ideas, we first prove the result for the case
of an invertible C1 function u, with the non-optimal scaling ε1/2. Here and
below we denote the right-hand side of (2.1) by η, and the integral on the
right-hand side of (2.2) by ε. Further, we assume Ω to be the unit ball, and
Ω′ a sufficiently small ball centered in the origin. We write c for a generic
numerical constant, which does not depend on the deformation u or on ε,
but can change from line to line.

In the proof we choose points such that the segments joining them are
’as good as on average’ (up to a constant) from several points of view. More
precisely, if ψi : Ω → R, 1 ≤ i ≤ N are finitely many nonnegative functions
which obey

∫
ψidx ≤ ci|Ω|, and θ is any number in (0, 1), then there is ω ⊂ Ω

with |ω| ≥ (1 − θ)|Ω| such that

for all x ∈ ω and all i one has ψi(x) ≤ N

θ
ci .

Indeed, the set Ω\ω where this property is violated coincides with the union
of the sets Ai = {x : ψi(x) > Nci/θ}, and each of them has size controlled by
θ|Ω|/N . In the rest of this section we shall not state the value of θ precisely,
but say only that properties are satisfied by most points in a given set.

Given an arbitrary direction ν, for most points x ∈ Ω′ we have∫
|∇2u|(x+ tν) dt ≤ cη and

∫
dist(∇u,K)(x+ tν) dt ≤ cε,

where both integrals are extended to the t ∈ R such that x + tν ∈ Ω. The
first condition implies that there is F ∈ R

2×2 such that |∇u−F | ≤ cη for any
t. The second implies that this F is ε-close to K, let us assume it to be close
to SO(2)A. If η is sufficiently small, the oscillation of ∇u is not sufficient to
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cover half of the distance between the two wells. For small ε and η we have
dist(∇u, SO(2)A) ≤ dist(∇u,K) on the considered segment. Thus, on such
’good’ lines only one well is used, and we obtain∫

dist(∇u, SO(2)A)(x+ tν)dt ≤ cε .

We may assume A = Id by a change of variables. The key point is now that
u can only shorten distances along ν, up to errors of order ε. In particular,

|u(x+ t2ν) − u(x+ t1ν)| ≤
∫ t2

t1

|∂νu|(x+ tν)dt

≤ |t1 − t2| +
∫ t2

t1

dist(∇u, SO(2))dt

≤ |t1 − t2| + cε .

The same argument applied to the inverse function u−1 gives the converse
bound (with the notation t̃ = x+ tν)

|t1 − t2| =
∣∣u−1(u(t̃1)) − u−1(u(t̃2))

∣∣ ≤ |u(t̃1) − u(t̃2)| + cε

(in the full proof this step becomes complex, since in general u does not
have an inverse). The result is that we find many segments whose length is
approximately unchanged by u.

Consider now a triangle [abc], whose sides are rigid in the sense above
(we denote by [abc] the triangle with vertices a, b and c). Then the map
u restricted to the three points a, b and c is close to an isometry, in the
sense that the affine interpolation between the three values has gradient
close to O(2). For simplicity we assume it be the close to the identity. We
get |u(a) − a| ≤ cε, and the same for b and c. Let p be any point on the
boundary of the triangle, say p ∈ [a, b]. By the previous argument the length
of u([a, p]) is at most ε more than |u(a) − u(p)|, hence

|u(a) − u(p)| ≤ |a− p| + cε ,

and the same for b. This implies that u(p) is at most a distance ε1/2 away
from the corresponding point in the segment [u(a), u(b)] (and hence from
p), see Figure 2.2. The same holds for all points on the boundary of [abc].
We now assume in addition that there exists ν ∈ R

2, |ν| = 1, such that
|Bν| < 1, and use (ν, ν⊥) as a basis for R

2. We fix s ∈ R such that the line
t → tν + sν⊥ intersects [abc] along a segment, and denote its extrema by t1
and t2. Consider now

u(t1 + sν⊥) − u(t2 + sν⊥) =

∫ t2

t1

∂νu(tν + sν⊥)dt . (2.4)
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Figure 2.2: Points belonging to a ’rigid’ segment ab can move only to order
ε in the tangential direction and to order ε1/2 in the normal direction. The
extrema obey u(a) ∈ B(a, cε), and the same for b. The point u(p) is in
B(a, |a − p| + cε) ∩ B(b, |b − p| + cε). Hence |u(p) − p| ≤ cε1/2, and the
projection of u(p)− p along a− b is controlled by cε. In the figure labels the
constants are not indicated explicitly.

The left-hand side has, by the previous argument, length |t2−t1|+O(ε1/2). To
estimate the right-hand side, let E denote the set where the minority phase
is used, i.e. the set where dist(∇u, SO(2)B) < dist(∇u, SO(2)). Then, we
have pointwise

|∂νu| ≤ 1 + (|Bν| − 1)χE + dist(∇u,K) ,

and (2.4) gives

|t1 − t2| − cε1/2 ≤ |t1 − t2| +
∫ t2

t1

[dist(∇u,K) + (|Bν| − 1)χE] dt .

Integrating over s, one gets (recall that |Bν| < 1)∫
[abc]

χE dx ≤ cε1/2 + c

∫
[abc]

dist(∇u,K) dx ≤ cε1/2 + cε ,

which, up to the exponent in the first error term, implies the desired estimate.
The exponent is finally raised to one by considering two neighbouring trian-
gles and lines that start or end in vertices (for which the length is controlled
up to order ε), see Figure 2.5 and Lemma 2.3 below.

If instead |Bν| ≥ |ν| for all ν ∈ R
2, then either B ∈ SO(2) an there is

nothing to prove, or detB > detA. In the latter case∫
[abc]

det∇u dx ≥ |[abc]| + (detB − 1) |E ∩ [abc]| − cε
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and by the previous argument∫
[abc]

det∇u dx = |u ([abc])| ≤ |[abc]| + cε1/2 .

Comparing the two expressions we conclude |E ∩ [abc]| ≤ cε1/2.

2.2 Segment rigidity

We now present a precise statement of the fact that one can find many
segments whose length is approximately preserved. This segment-rigidity
will also be the main ingredient of the H1/2 estimate in Section 3.3, hence
we state and prove it in slightly more general form than needed for Theorem
2.1. In particular we only assume a weaker control of the surface energy. For
notational simplicity we formulate the statement only for the case A = Id
(which is the only one used in the rest of this paper), the general form can be
obtained with a change of variables. Further, a direct extension to multiwell
energies is possible, with the same proof and only notational changes in the
statement. The geometry is illustrated in Figure 2.3.

Proposition 2.2. Let α ∈ (0, 1/8), θ ∈ (0, 1), c̄ > 0, p ≥ 1, and B ∈
R

2×2 \ SO(2). Then there are η and c (depending only on the above) such
that the following holds. Let u ∈ C1(Ω,R2) satisfy, for some r > 0,

1

r2

∫
Ω

φ(∇u)dx+
1

r

∫
Ω

|∇φ(∇u)| ≤ η (2.5)

where φ(F ) ≥ c̄ distp(F, SO(2)), and let x0, y0 be such that r < |x0 − y0| <
2r − 4αr, with B((x0 + y0)/2, r) ⊂ Ω. Then, there is a subset of (x, y) ∈
B(x0, αr) × B(y0, αr) with measure at least 1 − θ the total such that

1 − cε ≤ |u(x) − u(y)|
|x− y| ≤ 1 + cε (2.6)

and
1

r

∫
[x,y]

dist(∇u, SO(2))dH1 ≤ cε (2.7)

where

ε =
1

r2

∫
Br

dist(∇u, SO(2) ∪ SO(2)B)dx . (2.8)
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Figure 2.3: Sketch of the geometry in the statement of Proposition 2.2. The
two points x0 and y0 are fixed, and there are two small balls around them
such that they are well separated from each other and from the boundary of
the domain. Then, for most pairs (x, y), the segment [xy] is rigid under u.

Proof. The proof is based on obtaining from (2.5) a qualitative control on
the behavior of u on a large part of the domain which is sufficient to derive
an estimate for the desired quantities in terms of ε (in the relevant cases, ε
is much smaller than η).

We divide the proof in several steps. First we define a ’bad’ set ΩLG of
points where ∇u is far from a rotation, and show that ΩLG is small and has
small perimeter. By continuity, the gradient is still good on the boundary of
the ’bad’ set, hence the image of its boundary is also small. This shows that
for a large fraction of the possible (x, y) both segments [x, y] and [u(x), u(y)]
do not intersect the ’bad’ set (or its image). Then we show that we can invert
u along [u(x), u(y)], to obtain a smooth curve γ joining x with y, with energy
of order ε and away from the ’bad’ set. A straightforward line integration
concludes the proof. Without loss of generality we can assume r = 1 (by
scaling), x0 + y0 = 0 (by a translation), and Ω = B(0, 1) (restricting u).

Step 1. Definition and size of the bad set. By the coarea formula for
BV functions [2], from (2.5) we obtain

η ≥ |∇φ(∇u)|(Ω) =

∫
R

PerΩ({x ∈ Ω : φ(∇u(x)) ≥ t})dt .

Therefore for any fixed c1 > 0 there is c2 ∈ (c1/2, c1) such that the set

ΩLG = {x ∈ Ω : φ(∇u(x)) ≥ c2}
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satisfies the bound

PerΩ(ΩLG) ≤ 1

c1
η .

We choose c1 small enough so that φ(F ) ≤ c1 implies dist(F, SO(2)) <
min(dist(F, SO(2)B), 1/4). By (2.5) we then get |ΩLG| ≤ cη.

The gradient ∇u is uniformly close to SO(2) on Ω\ΩLG, and by continuity
also on the boundary. Therefore u(∂ΩLG) is rectifiable and

H1 (u(Ω ∩ ∂ΩLG)) ≤ cη .

Further, u(ΩLG) has small area. Indeed,

|u(ΩLG)| ≤
∫

ΩLG

| det∇u|dx ≤
∫

ΩLG

(1 + dist(∇u, SO(2)))2 dx

≤ c|ΩLG| + c

∫
Ω

φ2/p(∇u)dx ≤ cη . (2.9)

where in the last step we used by the embedding of BV into L2 and (2.5).

Step 2. Degree and local injectivity. We now show that there is a
ball B′ slightly smaller than Ω = B(0, 1) such that on a large part of B′ the
function u is invertible. The key fact is that u has degree one, since it is
approximately rigid on the boundary of B′.

From the quantitative rigidity estimate by Friesecke, James and Müller
[21] (see also (2.31) below) it follows that, for some Q ∈ SO(2),

∫
Ω

|∇u−Q|2dx ≤ c

∫
Ω

dist2(∇u, SO(2))dx ≤ c

(∫
Ω

φ2(∇u)dx
)1/p

≤ cη2/p ,

where in the last step we exploited again the embedding of BV in L2, and
by the Poincaré inequality u is close to an isometry I(x) = Qx+ b,∫

Ω

|∇u−∇I|2 + |u− I|2 dx ≤ cη2/p . (2.10)

Therefore there is r′ ∈ (1 − α/2, 1) such that∫
∂B′

|∇u−∇I|2 + |u− I|2 dH1 ≤ cη2/p ,

where B′ = B(0, r′). By the embedding of W 1,2(∂B′) in L∞(∂B′) we have

|u(x) − I(x)| < c3η
1/p for all x ∈ ∂B′ . (2.11)
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Consider now the homotopy defined for t ∈ [0, 1] by

vt(x) = tu(x) + (1 − t)I(x) .

The map vt is C1, v0 = I and v1 = u. By (2.11) the maps I and u differ on
∂B′ by less than c3η

1/p. Let B′′ = B(0, r′−α/2), so that B(x0, α) ⊂ B′′, and
the same for y0. Then, provided η is small enough, by (2.11) for any t

vt(∂B
′) ∩ I(B′′) = ∅

and the Brouwer degree deg(vt, B
′, z) does not depend on t, for any z ∈ I(B′′)

(see e.g. [18, Theorem 1.12]). The isometry I has degree one, hence

deg(u,B′, z) = 1 for all z ∈ I(B′′) .

This implies that

all z ∈ I(B′′) \ u(ΩLG) have exactly one x ∈ B′ ∩ u−1(z) . (2.12)

Indeed, since z �∈ u(ΩLG) all points in B′ ∩ u−1(z) have det∇u > 0. But the
degree being one, there is exactly one of them.

Consider now the set

ΩNI = {x ∈ B′ : u(x) ∈ u(ΩLG) ∩ I(B′′)} = B′ ∩ u−1(u(ΩLG) ∩ I(B′′)) .

Away from ΩLG we have det∇u ≥ 1/2, hence

|ΩNI | ≤ |B′ ∩ ΩLG| +
∫

B′\ΩLG

χΩNI
dx

≤ |ΩLG| + 2

∫
u(ΩLG)∩I(B′′)

#(u−1(z) ∩ B′ \ ΩLG)dz .

But for z ∈ I(B′′) we have #(u−1(z)∩B′ \ΩLG) ≤ 1+#(u−1(z)∩B′∩ΩLG),
since the degree is one and det∇u > 0 away from ΩLG. Further,∫

u(ΩLG)

#(u−1(z) ∩ ΩLG) dz =

∫
ΩLG

| det∇u| dx ≤ cη

by (2.9). This implies
|ΩNI | ≤ cη . (2.13)
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Step 3. Choice of x and y. In the following we show that several prop-
erties are satisfied by a large fraction of the possible choices of x and y in
the balls B(x0, α) and B(y0, α). The quantity η in the statement is chosen so
small that the ’bad’ choices for each of the considered properties are less that
θ/10 of the possible choices, and since we consider less than 10 properties
this shows that for a 1− θ fraction of the choices all properties are satisfied.
To shorten notation, we say that for most choices property P holds if

H4 ({(x, y) ∈ B(x0, α) × B(y0, α) : P does not hold})
≤ θ

10
H4 (B(x0, α) ×B(y0, α)) .

First, since |ΩLG| ≤ cη we have that, if η is small enough, for most choices

x �∈ ΩLG and y �∈ ΩLG . (2.14)

In the sequel we work in the reduced domains B1 = B(x0, α) \ ΩLG and
B2 = B(y0, α) \ ΩLG, which for sufficiently small η satisfy

|B1| ≥ cα2 , |B2| ≥ cα2 , |u(B1)| ≥ cα2 , |u(B2)| ≥ cα2 .

We now show that for most pairs (x, y)∫
[x,y]

dist(∇u, SO(2))dH1 ≤ cε , (2.15)

where c depends on α and θ. We first consider the integral of dist(∇u,K).
Let f = dist(∇u,K) in Ω, and zero elsewhere, so that the integral over [x, y]
can be extended to the entire line joining x with y. Then, we integrate the
result over (x, y) ∈ B1 × B2, and change variables. Let x ∈ B1, ν ∈ S1, and
consider the line t → x + tν. Only those lines for which |ν − ν0| ≤ α can
intersect B2 (see Figure 2.4, here ν0 = (y0 − x0)/|y0 − x0|). The Jacobian of
the transformation is uniformly bounded, since the radius α of the two balls
is smaller than |x0 − y0|/4. This gives∫

B1×B2

dx dy

∫
[x,y]

f dH1 ≤ cα

∫
|ν−ν0|≤α

dν

∫
B1

dx

∫
R

dt f(x+ tν)

≤ cα3

∫
Ω

f dx ≤ cα3ε ,

and implies that for most pairs (x, y) we have
∫
[x,y]

f dH1 ≤ cε.

Now consider the set ∂ΩLG. For any fixed ν ∈ S1 the set Aν of x ∈
B1 such that the line t → x + tν intersects ∂ΩLG has area smaller than
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Figure 2.4: The balls B1 and B2 around x0 and y0 are well separated
compared to their radius α. Therefore all lines which intersect both have
direction close to the one joining their centers. For each x ∈ B1, we write
the integral over y ∈ B2 in polar coordinates, with center x. See text.

2αH1(∂ΩLG) ≤ cαη. To see this, let x = x0 + sν + rν⊥ ∈ Aν . Then |s| ≤ α,
and x0 + rν⊥ is contained in the orthogonal projection of ∂ΩLG on the line
through x0 parallel to ν⊥. Therefore the H1 measure of the set of possible r
is less than H1(∂ΩLG). This proves the claim, which in turn implies that for
most pairs the segment [x, y] does not intersect ∂ΩLG. Recalling (2.14),

[x, y] ∩ ΩLG = ∅ .
This implies dist(∇u, SO(2)) ≤ f = dist(∇u,K) on [x, y], hence (2.15).

Now we consider analogously the segments [u(x), u(y)] in the image. By
(2.13) for most choices of (x, y) one has

u(x), u(y) �∈ u(ΩLG) .

We claim that for most choices of x and y one also has

[u(x), u(y)]∩ u(∂ΩLG) = ∅ . (2.16)

To see this, we focus on the smaller domains

B̃i =

{
x ∈ Bi \ ΩNI : |u(x) − I(x)| ≤ 1

2
α

}
, i = 1, 2 .

By (2.10) and (2.13) we have |Bi \ B̃i| ≤ cη1/p. Now we repeat the previous
argument in the image. For any ξ ∈ u(B̃1) ⊂ B(I(x0),

3
2
α) the lines t→ ξ+tν

can intersect u(B̃2) ⊂ B(I(y0),
3
2
α) only if |ν − I(ν0)| ≤ 3α. Fix one such ν

and consider

Aν =
{
ξ ∈ u(B̃1) : {x+ tν}t∈R ∩ u(∂ΩLG) �= ∅

}
.

Reasoning as above, we get |Aν | ≤ cH1(u(∂ΩLG)) ≤ cη, hence (2.16) follows.
All segments S = [u(x), u(y)] with (x, y) ∈ B̃1 × B̃2 are contained in I(B′′),
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hence S ⊂ u(B′). Even more, S ⊂ u(B′ \ ΩLG). Indeed, by continuity if
this was not the case then u(∂ΩLG) would intersect S, contradicting (2.16).
Therefore by (2.12) we can invert u along S. The inverse is locally C1, since
away from ΩLG the determinant is close to 1. It follows that there is a curve
γxy : [0, 1] → B′ such that u ◦ γxy is a C1 monotonic parametrization of the
segment [u(x), u(y)].

It remains to show that for most (x, y) the curve γxy carries energy of
order ε. We define g : R

2 → R by

g(z) =
∑

x∈u−1(z)∩(B′\ΩLG)

dist(∇u,K)(x) ,

where it is understood that g = 0 if the sum is empty. It is clear that∫
R2

g dz =

∫
B′\ΩLG

f det∇u dx ≤ cε .

As above, the set of (ξ, η) ∈ B(I(x0),
3
2
α) × B(I(y0),

3
2
α) where∫

[ξ,η]

g dH1 ≤ cε

does not hold, is small. Then, also the set of (x, y) ∈ B̃1×B̃2 where the same
condition over [u(x), u(y)] is violated is small. Hence for most pairs (x, y)∫

γxy

f dH1 ≤ c

∫
[u(x),u(y)]

g dH1 ≤ cε . (2.17)

Step 4. Length estimates. We have shown that∫
[x,y]

dist(∇u, SO(2)) dH1 ≤ cε and

∫
γxy

dist(∇u, SO(2)) dH1 ≤ cε ,

where γxy is a C1 curve joining x and y, with u ◦ γxy being a monotonic
parametrization of the segment [u(x), u(y)]. The first condition implies

|u(x) − u(y)| ≤
∫

[x,y]

|∇τu| dH1

≤ |x− y| +
∫

[x,y]

dist(∇u, SO(2))dH1

≤ |x− y| + cε ,
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where ∇τ denotes the tangential derivative. Since u is a one-to-one map of
the curve γxy onto the segment [u(x), u(y)],

|u(x) − u(y)| =

∫
γxy

|∇τu| dH1

≥ H1(γxy) −
∫

γxy

dist(∇u, SO(2))dH1

≥ |x− y| − cε .

This concludes the proof.

2.3 Two-well rigidity in L1

We now come to the second main ingredient of the proof of Theorem 2.1,
namely, a construction showing that if the sides of two appropriately chosen
triangles are rigid, then only one phase is used, up to a small error.

Lemma 2.3. Let A and B ∈ R
2×2 have positive determinant. Then there

are positive numbers ρ, c, η depending only on A and B such that for any
u : Q = (−r, r)2 → R

2 which obeys

1

r

∫
Q

∣∣∇2u
∣∣ ≤ η (2.18)

for some r > 0, one has

min
J∈{A,B}

∫
Q′

dist(∇u, SO(2)J)dx ≤ c

∫
Q

dist(∇u,K)dx, (2.19)

where Q′ = (−ρr, ρr)2 and K = SO(2){A,B}.
Proof. By scaling we can assume r = 1, and by density that u is smooth.
We denote by E the set where the B-phase is used,

E = {x ∈ Q : dist(∇u, SO(2)B) ≤ dist(∇u, SO(2)A)} (2.20)

and assume it is the minority one, |E| ≤ |Q|/2 (if not, we swap A and B).
This implies∫

Q\E
dist(∇u, SO(2)A)dx ≤

∫
Q

dist(∇u,K)dx = ε ,

where the last equality defines ε. By the Poincaré estimate, (2.18) implies
that there is F ∈ R

2×2 such that∫
Q

|∇u− F |dx ≤ cη , (2.21)
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Figure 2.5: Sketch of the construction used in Lemma 2.3. The points u(a),
u(b), u(c) and u(d) are located in ε-balls around a, b, c and d respectively.

and by the previous estimate dist(F, SO(2)A) ≤ cη + cε. If ε ≥ η the proof
is concluded; in the following we will therefore assume ε ≤ η.

The rest of the proof is divided in two cases, depending on whether there
is a vector ξ such that |Bξ| < |Aξ|, or not.

Case 1: |Bξ| < |Aξ| for some ξ ∈ R
2. We set φ(G) = dist(G, SO(2)A),

for G ∈ R
2×2. Then (2.18) and (2.21) give∫

Q

|φ(∇u)|dx+

∫
Q

|∇φ(∇u)| ≤ cη . (2.22)

We change variables according to ũ(x) = u(A−1Qx), for a suitable Q ∈
SO(2), and reduce to the case A = Id and |Be1| < 1. This change of
variables only depends on A and B, hence all constants in the statement are
affected only by factors depending on A and B. Let δ > 0 be such that

|Bξ| < 1 − 2δ for all ξ ∈ R
2 s.t. |ξ| = 1, |ξ − e1| < 2δ .

Consider the rhombus with vertices

a0 =

(
1

2
, 0

)
b0 =

(
−1

2
, 0

)
c0 = (0, δ) d0 = (0,−δ)

(see Figure 2.5). Now we fix two small radii ρ� ρ̃� δ (to be chosen later),
and claim that there are

c ∈ B(c0, ρ) , d ∈ B(d0, ρ) ,

such that for many symmetric choices of

a ∈ B(a0, ρ̃) , b ∈ B(b0, ρ̃) ,
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the five segments [a, c], [a, d], [b, c], [b, d], [c, d] satisfy the statement of Propo-
sition 2.2. By symmetric we mean that a and b are symmetric with respect
to the line joining c with d. Furthermore, all points can be chosen so that

|u(x) − (Fx+ q)| ≤ 1

10
δ , for x ∈ {a, b, c, d} , (2.23)

with a unique q ∈ R
2. The latter property is clearly satisfied by most choices

in the given balls, since by (2.21) there is a q such that
∫ |u(x)−(Fx+q)|dx ≤

cη. If the radii ρ and ρ̃ are sufficiently small compared to δ, then for any
p ∈ [c, d] we have |B(a− p)| < |a− p|(1− δ) and |B(b− p)| < |b− p|(1− δ).

The claim is proved based on Proposition 2.2. For each pair {x, y} ⊂
{a0, b0, c0, d0} there are many choices which are ’good’. Fix a small ζ > 0
and consider the set

Sca = {c ∈ B(c0, ρ) : for at least 1 − ζ of the a ∈ B(a0, ρ)

the segment [c, a] is as given in Proposition 2.2}
and analogously Scb, Scd. By Proposition 2.2, if η is small enough each of
them covers at least a (1−ζ)-fraction of B(c0, ρ). Therefore their intersection
Sc = Sca ∩ Scb ∩ Scd covers at least a (1 − 3ζ)-fraction of the ball.

Now consider the point d. Analogously, there is a set Sd covering most
of B(d0, ρ) such that for each such d, most c in Sc, most a in B(a0, ρ) and
most b in B(b0, ρ) will give good segments (note that we require the first
segment to end in some c ∈ Sc). Pick now any d ∈ Sd, and any of the
corresponding c ∈ Sc. Then it is immediate that only few choices of a and
b are not admissible. Let Ta be the set of bad a, and Tb the set of bad b
(both are small). Let Pcd be the map representing symmetry across the line
through c and d. Since ρ̃� ρ, PcdB(a0, ρ̃) overlaps B(b0, ρ̃) over a large area,
but the union of the ’bad’ points PcdTa ∪ Tb is small. Hence there are many
good choices of symmetric a and b. This concludes the proof of the claim.

Proposition 2.2 yields that the five lengths are preserved by u, up to errors
of order ε. This implies that there is an isometry x→ Qx+ p such that

|u(x) − (Qx+ p)| ≤ cε for x ∈ {a, b, c, d} . (2.24)

Note that in a first step we possibly find two different isometries for the two
triangles. By (2.23) both isometries have positive orientation, and since the
triangles have an edge in common we can assume that the isometries are the
same. For simplicity of notation we assume without loss of generality that
Q = Id and p = 0. Then,

|u(a) − a| ≤ cε ,

∫
[a,c]

dist(∇u, SO(2))dH1 ≤ cε ,
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Figure 2.6: Location of u(t) in the proof of Lemma 2.3. The minimum of
|a − t′| + |b − t′|, among all t′ in a given circle centered in c, is achieved by
the point of the circle which belongs to the segment [c, d] and is closest to its
midpoint (c + d)/2. We use here that a and b are symmetric with respect to
the line cd, and that t is closer to c than to d.

and the same for the other 3 points and the other 4 segments.
Let t be any point of [c, d]. Assume for definiteness that |c− t| ≤ |d− t|,

in the other case we proceed analogously using d instead of c. The estimate
(2.7) of Proposition 2.2 gives

|u(c) − u(t)| ≤ |c− t| +
∫

[c,t]

dist(∇u, SO(2))dH1 ≤ |c− t| + cε .

Combining with the previous estimate on |u(c) − c| we get |c − u(t)| ≤
|c− t| + cε, which in turn implies

|a− u(t)| + |b− u(t)| ≥ |a− t| + |b− t| − cε ,

see Figure 2.6. Since |u(a) − a| ≤ cε and the same for b, we also get

|u(a) − u(t)| + |u(b) − u(t)| ≥ |a− t| + |b− t| − cε . (2.25)

Consider now the segments [a, t] and [b, t]. Since along those directions
the matrix B is strictly short (i.e. it maps each vector parallel to a − t or
b− t to a shorter one), we get

|u(a) − u(t)| ≤ |a− t| +
∫

[a,t]

dist(∇u,K)dH1 − δ

∫
[a,t]

χE dH1

and the same for u(b) − u(t). Here χE denotes the characteristic function of
the set E where the minority phase is used, defined in (2.20). Comparing
with (2.25) we get∫

[a,t]∪[t,b]

χE dH1 ≤ δ−1

∫
[a,t]∪[t,b]

dist(∇u,K)dH1 + cδ−1ε . (2.26)

19



The factor 1/δ can be included in the constants, since it only depends on
A and B. We integrate over all t ∈ [c, d] and change variables to obtain an
integration over the rhombus R = [adbc],∫

R

χE J dx ≤ c

∫
R

dist(∇u,K) J dx+ cε . (2.27)

Here J(x) is the Jacobian determinant, which behaves as 1/dist(x, {a, b}) ≥
1. Since this is bounded from below, in the left-hand side we can simply drop
J . To show that the integral in the right-hand side is bounded by ε we make
use of the remaining freedom in the choice of a and b, and of the fact that the
integral of J over the rhombus is finite. Precisely, we enlarge the integral to
a symmetric rhombus with a 90-degree aperture, and sum the contributions
on the two sides. Let

g(x) = dist(∇u(x), K) + dist(∇u(Pcdx), K) ,

where as always we extend by zero outside the domain, and

Ca = {x : 0 ≤ x1 ≤ a1 , |x2 − a2| ≤ a1 − x1}
be the translation of a fixed cone by a, and let Dx = {a : x ∈ Ca} be the
symmetric cone. We obtain∫

R2

da

∫
Ca

g(x)
1

|x− a|dx =

∫
R2

dx g(x)

∫
Dx

1

|x− a|da ≤ cε ,

which shows that for most choices of a∫
R

dist(∇u,K) J dx ≤
∫

Ca

g J dx ≤ cε .

This concludes the proof in the first case.

Case 2: |Bξ| ≥ |Aξ| for all ξ ∈ R
2. Again, with a change variables we

can assume A = Id and detB > 1 (if detB ≤ 1, then either we are in Case 1
or B ∈ SO(2)). By the usual choice argument based on Fubini, for one-half
of the r ∈ (1/2, 1) we have∫

∂Br

dist(∇u,K)dH1 ≤ cε and

∫
∂Br

φ(∇u) + |∇φ(∇u)|dH1 ≤ cη ,

where Br = B(0, r). This implies that for most r the boundary ∂Br is entirely
in the A-phase, in the sense that we have dist(∇u, SO(2)) ≤ cη everywhere
on ∂Br. We fix one such r. The above gives, in particular,∫

∂Br

dist(∇u, SO(2))dH1 ≤ cε and det∇u ≥ 1

2
on ∂Br .
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The idea of the proof is to use the first of these estimates to control the
change in length along ∂Br, and then an isoperimetric inequality to show
that the volume cannot increase by more then ε. The desired estimate will
follow from detB > detA = 1.

To make this precise, we first observe that∫
Ω

det∇u dx =

∫
R2

deg(u,Ω, y)dy ,

as can be seen by a decomposition of the image in level sets of deg(u,Ω, ·) or
directly from the coarea formula. Now we apply the weighted isoperimetric
inequality ∫

R2

deg(u,Ω, y)dy ≤ 1

4π

(∫
∂Ω

|∂τu|dH1

)2

, (2.28)

where ∂τ denotes the tangential derivative (see below for a short proof),
applied to Ω = Br. Since |∂τu| ≤ 1 + dist(∇u, SO(2)) this gives∫

Br

det∇u dx ≤ πr2 + cε .

Let now E be the set where ∇u is in the minority (B-) phase. A straightfor-
ward computation shows that∫

Br

det∇u dx ≥ |Br| + (detB − 1)|E| − cε

which implies |E| ≤ cε, hence the thesis.
We finally show how the weighted isoperimetric inequality (2.28) is de-

rived from the standard isoperimetric inequality. We define, for k ∈ Z,

ωk = {y ∈ R
2 : deg(u,Ω, y) ≥ k} .

The boundaries ∂ωk cover the jump set of deg(u,Ω, ·), which in turn is con-
tained in u(∂Ω). We have

∫
R2

deg(u,Ω, y)dy ≤
∑
k>0

|ωk| ≤ 1

4π

∑
k>0

|∂ωk|2 ≤ 1

4π

(∑
k>0

|∂ωk|
)2

.

If the ∂ωk are disjoint, up to an H1–null set, then

∑
k>0

|∂ωk| ≤ H1 (u(∂Ω)) ≤
∫

∂Ω

|∂τu|dH1
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gives the desired (2.28). In the general case, we claim that

for H1-a.e. y ∈ u(∂Ω) one has #{k : y ∈ ∂ωk} ≤ #u−1(y) ∩ ∂Ω . (2.29)

Repeating the previous computation, this implies

∑
k>0

|∂ωk| ≤
∫

u(∂Ω)

#{k : y ∈ ∂ωk}dH1 ≤
∫

∂Ω

|∂τu|dH1

and hence (2.28). We finally prove (2.29). Fix some y ∈ u(∂Ω). Since
u ∈ C1(Ω̄) and det∇u �= 0 on ∂Ω, the set X = u−1(y) ∩ ∂Ω is finite and
for each xj ∈ X we can find a ball Bj such that u is a diffeomorphism on
Bj . By continuity, there is a neighbourhood N of y whose counterimage is
completely contained in the Bj ’s. Therefore

deg(u,Ω, z) =
N∑

j=1

deg(u,Ω ∩ Bj, z) for z ∈ N .

The map u is a diffeomorphism in each Bj, hence the jump of each of the
deg(u,Ω∩Bj , y) at y is ±1. This shows that the jump of deg(u,Ω, ·) at y is
at most N and proves (2.29) (see e.g. [18] for the elementary properties of
the degree used here).

We finally come to the proof of Theorem 2.1, which is based on covering
the domain by suitable squares and using Lemma 2.3 on each of them.

Proof of Theorem 2.1. Let l = dist(Ω′, ∂Ω). The constant c2 = c2(A,B) will
be chosen in the second part of the proof. The Theorem is immediate if (2.3)
does not hold. Indeed, by (2.1) and the Poincaré inequality∫

Ω

|∇u− F |dx ≤ cΩη0l

for some F ∈ R
2×2. Therefore there are J ∈ {A,B} and Q ∈ SO(2) with

|Ω| |F −QJ | = |Ω| dist(F,K) ≤ cΩη0l +

∫
Ω

dist(∇u,K)dx .

This implies ∫
Ω

|∇u−QJ | dx ≤ 2cΩη0l +

∫
Ω

dist(∇u,K)dx

which, if (2.3) does not hold, is the thesis.
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We now come to the interesting case, where (2.3) holds, i.e.∫
dist(∇u,K)dx is small compared to l2. By density we can assume u ∈ C1.

Now we are in a position to apply Lemma 2.3 to each sufficiently large square
contained in Ω. The bound on the size of the square is given by the value of
η. The result follows from a covering argument, which we give in some detail
in order to trace the dependence of the constants on l.

Let ρ be as in Lemma 2.3. We can assume that ρ ≤ 1/4. We fix r = lρ/2,
and let x1, . . . xk be the points in rZ2 such that the squares Qi = xi +(−r, r)2

intersect Ω′. The squares Qi cover Ω′, are contained in Ω, and each point
x ∈ Ω is contained in at most 4 of them. Let now r′ = l/2, and Q′

i =
xi + (−r′, r′)2. Since (r + r′)

√
2 = l(ρ+ 1)/

√
2 ≤ l, all Q′

i ⊂ Ω. Choose now
η0 as one-half of the η in the statement of Lemma 2.3. Then (2.1) implies
that Lemma 2.3 can be applied to each of the Q′

i, hence for each i there is
Ji ∈ {A,B} with∫

Qi

dist(∇u, SO(2)Ji)dx ≤ c∗
∫

Q′
i

dist(∇u,K)dx , (2.30)

where c∗ only depends on A and B. We claim that Ji does not depend on
i. Indeed, the squares Qi cover the connected set Ω′. Therefore if {Ji} were
not constant there would be i and j such that Ji = A, Jj = B, Qi ∩Qj �= ∅.
Since the centers of the squares lie on rZ2, this implies |Qi ∩Qj| ≥ r2, and

r2dist(A, SO(2)B) ≤
∫

Qi∩Qj

dist(∇u, SO(2)Ji) + dist(∇u, SO(2)Jj)dx

≤ 2c∗
∫

Qi∪Qj

dist(∇u,K)dx ≤ 2c∗c2(A,B)l2

where c∗ is as in (2.30), and we used (2.3). But this is a contradic-
tion, provided that c2 is chosen small enough (precisely, we need c2 <
ρ2c∗dist(A, SO(2)B)/8). Therefore Ji does not depend on i.

To conclude the proof, we just observe that∫
Ω′

dist(∇u, SO(2)J)dx ≤
∑

i

∫
Qi

dist(∇u, SO(2)J)dx

≤ c∗
∑

i

∫
Q′

i

dist(∇u,K)dx

≤ 9c∗

ρ2

∫
Ω

dist(∇u,K)dx ,

since any point on Ω belongs at most to 9/ρ2 of the Q′
i.
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In closing this section we mention two consequences of our result.

Corollary 2.4. Assumption (2.1) can be weakened to an analogous BV
control of any scalar function which controls the distance from the wells.
In particular, if A is the majority phase (i.e. dist(∇u, SO(2)A) ≤
dist(∇u, SO(2)B) on at least one-half of the domain), then one can replace
(2.1) with ∫

Ω

|∇φ(∇u)| ≤ η dist(Ω′, ∂Ω)

for some φ such that

φ(F ) ≥ c distp(F, SO(2)A) for some p ≥ 1 , c > 0 .

Proof. As above, exploiting the more general formulation of Proposition 2.2.

Corollary 2.5. Assume that

ε =

∫
Ω

distp(∇u,K)dx

is small, and keep assumption (2.1) on the surface energy. Then,∫
Ω′

distp(∇u, SO(2)J)dx ≤ cε1/p .

The exponent 1/p in this bound is optimal.

Proof. By estimating the L1 norm with the Lp norm, Theorem 2.1 gives∫
Ω′

dist(∇u, SO(2)J)dx ≤ cε1/p ,

for some J ∈ {A,B}. The the result follows from

distp(F, SO(2)J) ≤ c [distp(F,K) + dist(F, SO(2)J)] .

The optimality of the exponent 1/p follows from a straightforward extension
of the construction given in [13, Lemma 4.3].
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2.4 One-well L1 rigidity results

We briefly discuss here rigidity for the one-well problem in the L1 case. The
classical Liouville rigidity states that if ∇u ∈ SO(n) everywhere, then ∇u is
a constant. A quantitative version of this result has recently been derived by
Friesecke, James, and Müller [20, 21], who obtained that for any connected
bounded Lipschitz domain Ω ⊂ R

n and any p strictly between 1 and ∞ there
is a constant c = c(p,Ω) such that

min
Q∈SO(n)

∫
Ω

|∇u−Q|p dx ≤ c

∫
Ω

distp(∇u, SO(n)) dx (2.31)

for any u : Ω → R
n. The proof makes use of a decomposition of u into a

harmonic part and a remainder. Even if presented for the case p = 2, their
proof can be extended with minor changes to the Lp case (see below). In the
limiting case p = ∞ one only obtains an estimate in BMO, as was shown by
John in [24]. We discuss here the case p = 1.

The corresponding linear version of the rigidity estimate, known as Korn’s
inequality, states that, for the same Ω and 1 < p < ∞, there is a constant
c = c(p,Ω) such that

min
S=−ST

‖∇u− S‖Lp(Ω) ≤ c
∥∥∇u+ ∇uT

∥∥
Lp(Ω)

(2.32)

for any u ∈ W 1,p(Ω,Rn) [36, 38, 22]. Both (2.32) and (2.31) do not hold for
p = 1, see [33, 11]. Indeed, for p = 1 one obtains the weaker estimate

min
S=−ST

‖∇u− S‖w−L1(Ω) ≤ c
∥∥∇u+ ∇uT

∥∥
L1(Ω)

, (2.33)

where the weak-L1 quasinorm is defined by

‖f‖w−L1(Ω) = sup
λ>0

λ |{x ∈ Ω : |f(x)| ≥ λ}| .

It is clearly controlled by the L1 norm, i.e. ‖f‖w−L1 ≤ ‖f‖L1, but not
equivalent to it, as the example f(x) = 1/x on the real line shows. The
inequality (2.33) can be extended to functions of bounded deformation [1].
The combination of the Korn rigidity estimate with the Sobolev embedding,
and the corresponding trace inequality, instead hold also in the critical case
p = 1. Precisely, one has

min
S=−ST , b∈R2

‖u(x)−Sx−b‖L1∗(Ω)+‖u(x)−Sx−b‖L1(∂Ω) ≤ c
∥∥∇u+ ∇uT

∥∥
L1(Ω)

where 1∗ = n/(n− 1), see [26, 3, 37].
We show here that analogous results hold in the nonlinear situation.
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Proposition 2.6. Let v : Ω → R
n, with Ω bounded, Lipschitz and connected,

and set
ε = ‖dist(∇v, SO(n))‖L1(Ω) .

Then there is Q ∈ SO(n) such that

‖∇v −Q‖w−L1(Ω) ≤ cε , ‖∇v −Q‖L1(Ω) ≤ cεmax

(
1, ln

1

ε

)
, (2.34)

and, for some b ∈ R
n,

‖v −Qx− b‖L1∗ (Ω) ≤ cε , ‖v −Qx− b‖L1(∂Ω) ≤ cε , (2.35)

where 1∗ = n/(n− 1). All constants depend only on Ω.

Both results in (2.35) were first derived by Kohn in [27] for bilipschitz
maps using a different measure of strain (which is equivalent to the present
one after the truncation step).

Proof. By Proposition A.1 of [21] we can truncate v to obtain u such that

|∇u| ≤ c , ‖∇u−∇v‖L1(Ω) ≤ cε .

It is clearly sufficient to prove the result for ε < 1/2, and for u instead of v.
By (2.31) with p = 2 there is R ∈ SO(n) such that

‖∇u− R‖L2(Ω) ≤ c‖dist(∇u, SO(n))‖L2(Ω) ≤ cε1/2 . (2.36)

We can assume without loss of generality that R = Id (otherwise, we replace
u by R−1u). By Taylor expansion one gets∣∣∣∣∇u+ ∇uT

2
− Id

∣∣∣∣ ≤ c dist(∇u, SO(n)) + c|∇u− Id|2

pointwise, which gives

‖∇u+ ∇uT − 2Id‖L1(Ω) ≤ cε .

By (2.33) there is an antisymmetric matrix S ∈ R
n×n such that

‖∇u− Id − S‖w−L1(Ω) ≤ c
∥∥∇u+ ∇uT − 2Id

∥∥
L1(Ω)

≤ cε ,

and by (2.36) one has |S| ≤ cε1/2. By Taylor expansion one finally obtains

‖∇u− e−S‖w−L1(Ω) ≤ cε .

26



This proves the weak-L1 estimate in (2.34). The trace estimate and the L1∗

follow analogously from the corresponding linear results. To prove the L1

estimate for ∇u, we simply observe that

‖∇u−Q‖L1(Ω) =

∫ ∞

0

|{x ∈ Ω : |∇u(x) −Q| > t}|dt

≤ c‖dist(∇u, SO(n))‖L1(Ω) +

∫ 4n

0

|{x : |∇u−Q| > t}|dt

≤ cε+

∫ 4n

0

min

(
|Ω|, 1

t
‖∇u−Q‖w−L1

)
dt ≤ cε ln

1

ε
.

Optimality of this result was shown in [11].

In closing, we remark that the proof of Friesecke, James and Müller holds
for all p ∈ (1,∞) on smooth domains, just replacing (3.13) in [21] with the
corresponding singular-integral estimate for the Laplace operator. However,
Lp estimates for the inhomogeneous Dirichlet problem do not, in general,
hold on Lipschitz domains, see [23]. This difficulty can be circumvented by
solving the Laplace equation on the whole of R

n. Precisely, one replaces
(3.12) in [21] by z = divψ, where ψ : R

n → R
n×n solves

−∆ψ =

{
cof ∇v −∇v in Ω

0 outside ,

componentwise, with zero boundary data at infinity. Then, singular-integral
estimates on R

n give

‖∇z‖Lp(Ω) ≤ ‖∇2ψ‖Lp(Ω) ≤ ‖∇2ψ‖Lp(Rn) ≤ c‖ cof ∇v −∇v‖Lp(Ω) ,

which replaces (3.13). The same applies to Theorem 3.1. The rest of the
argument is unchanged.
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3 Gamma convergence

In this section we determine the Gamma limit of

Iε[u,Ω] =

∫
Ω

1

ε
W (∇u) + ε|∇2u|2dx .

as ε→ 0. We always assume that

W ∈ C0(R2×2,R) satisfies W (QF ) = W (F ) for all F ∈ R
2×2, Q ∈ SO(2),

W ≥ 0, W vanishes on K = SO(2){A,B} with detA > 0 , detB > 0 .

(3.1)

We additionally assume quadratic growth, i.e. for constants c1, c2 > 0

c1 dist2(F,K) ≤ W (F ) ≤ c2 dist2(F,K). (3.2)

We show that the limit functional is finite only on functions u such that
∇u takes only values in K, and that on such functions it is proportional
to the length of the interface between the region where ∇u ∈ SO(2)A and
the one where ∇u ∈ SO(2)B. Dolzmann and Müller [16] have characterized
such functions as local laminates that are locally affine and have jumps only
between the A and the B region. The Gamma limit of Iε is

I0[u,Ω] =

{∫
J∇u

k(ν)dH1 if ∇u ∈ BV (Ω, K),

+∞ else,
(3.3)

where J∇u denotes the jump set of ∇u and ν the normal to it. The surface
energy k is defined as

k(ν) = inf
{

lim inf
i→∞

Iεi
[ui, Qν ] : εi → 0, ui → uν

0 in L1
}
, (3.4)

is positive, and satisfies k(ν) = k(−ν). Here, Qν is a unit square centered
in the origin with one side parallel to ν and uν

0 is a continuous function with
∇uν

0(x) = A if x · ν > 0, and ∇uν
0(x) = QB if x · ν < 0, Q ∈ SO(2) being

such that A−QB = a⊗ ν for some a ∈ R
2.

Theorem 3.1. Let Ω ⊂ R
2 be a strictly star-shaped, bounded Lipschitz do-

main and let W satisfy (3.1) and (3.2). Then

Γ − lim
ε→0

Iε = I0

with respect to the strong L1 topology, and finite-energy sequences have a
converging subsequence. More precisely,
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(i). Compactness. For every sequence ui, εi with εi → 0 and Iεi
[ui,Ω] ≤

C there exists a subsequence, again denoted by εi, ui, and u0 with
I0(u0) <∞ such that ui − pi → u0 in W 1,2(Ω) for some pi ∈ R.

(ii). Lower bound. For every function u0 and every sequences εi → 0 and
ui → u0 in L1(Ω) we have

lim inf
i→∞

Iεi
[ui,Ω] ≥ I0(u0,Ω).

(iii). Upper bound. For every function u0 and every sequence εi → 0 there
exists a sequence ui → u0 in L1(Ω) such that

lim
i→∞

Iεi
[ui,Ω] ≤ I0(u0,Ω).

An open set Ω is strictly star-shaped if there is a point x ∈ Ω such that
for any y ∈ ∂Ω the segment (x, y) is contained in Ω. The theorem is proven in
the remaining subsections. The argument can be extended to finitely many
wells with minor changes.

3.1 Compactness

We start with the compactness result. The standard argument, based on the
arithmetic-geometric mean inequality, only gives a bound for the length of the
interface between the two wells. The rigidity inside each well is then obtained
using the structure of SO(n). We formulate the result in n dimensions since
there is no change in the proof.

Proposition 3.2 (Compactness). Assume that W : R
2×2 → R is contin-

uous, with W = 0 on K = SO(n){A,B} and W > 0 elsewhere, for some
nonsingular A and B, and

W (ξ) ≥ c |ξ|p − 1

c

for some p ≥ 1 and all ξ ∈ R
n×n, and let Ω ⊂ R

n be a bounded Lipschitz
domain. Then for all sequences ui, εi such that εi → 0 and Iεi

[ui,Ω] ≤ C <
∞ there exists a subsequence such that

ui − 1

|Ω|
∫

Ω

ui(x)dx

converges strongly in W 1,p to a u0 ∈ W 1,p(Ω) with ∇u0 ∈ BV (Ω, K). Fur-
ther, u0 is locally a simple laminate, in the sense that the essential boundary
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of the set E = {x : ∇u(x) ∈ SO(n)B} consists of subsets of hyperplanes
which extend up to the boundary of Ω and do not intersect in Ω, and u0 is
affine on each ball whose intersection with ∂E has zero Hn−1-dimensional
measure.

Proof. To simplify the notation, without loss of generality we assume that∫
Ω
ui(x)dx = 0 for all i. By the growth assumption on W there are L and

c > 0 such that
cW (ξ) ≥ |ξ|p for all |ξ| ≥ L .

Then,

0 ≤
∫
{|∇ui|≥L}

|∇ui|pdx ≤ c

∫
Ω

W (∇ui)dx ≤ cCεi → 0 . (3.5)

Therefore the sequence ui is equibounded in W 1,p, and for p = 1 the sequence
∇ui is equiintegrable. It follows that we can extract a subsequence that
converges weakly in W 1,p to a limit, call it u0. At the same time, ∇ui

generates a gradient Young measure {νx}x∈Ω, and

0 = lim
i→∞

∫
Ω

W (∇ui)dx ≥
∫

Ω

∫
Rn×n

W (ξ)dνx(ξ)dx .

Therefore the measure νx is supported on K for almost every x ∈ Ω.
Consider now the truncated geodesic distance dW (F,G) induced on R

n×n

by the potential W , which is defined by

dW (F,G) = inf

{∫ 1

0

min
(√

W (g(s)), L
)
|g′(s)|ds : g ∈ C0([0, 1],Rn×n),

g(0) = F, g(1) = G, g piecewise C1

}
, (3.6)

where L is as above. The function dW (·, A) is Lipschitz continuous, and
dW (F,A) = 0 iff F = QA for some Q ∈ SO(n), and the same for B. If
AB−1 �∈ SO(n), since W is positive away from K we get dW (B,A) > 0.

From the definition we have∫
Ω

|∇dW (∇ui(x), A)| ≤
∫

Ω

√
W (∇ui(x))

∣∣∇2ui(x)
∣∣ dx ≤ 1

2
Iεi

[ui,Ω] .

Therefore dW (∇ui(x), A) is uniformly bounded in W 1,1, and taking an addi-
tional subsequence, we have that dW (∇ui(x), A) converges weakly in BV to
a limit d0(x) =

∫
dW (ξ, A)dνx(ξ). If AB−1 �∈ SO(n) the limit d0 takes only

two values, 0 and dW (B,A) > 0, and

dW (∇ui(x), A)⇀d0(x) = dW (B,A)χE(x) weakly in BV
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for some set of bounded perimeter E ⊂ Ω. In the degenerate case AB−1 ∈
SO(n) it suffices to take E = ∅ in the following argument. In both cases we
have supp νx ∈ SO(n)B a.e. on E, and supp νx ∈ SO(n)A a.e. on Ω \ E.

In order to show that ui → u0 strongly in W 1,p, we first need to truncate
the sequence. This is done by means of Proposition A.1 of [21] (see also [17,
Sect. 6.6.2]), which permits to construct for each ui a function vi such that

‖∇vi‖L∞(Ω) ≤ c, ‖∇ui −∇vi‖L1(Ω) ≤ c

∫
{|∇ui|>L}

|∇ui|dx ≤ cεi .

Therefore vi has the same weak limit (in W 1,p) as ui, and its gradients gen-
erate the same Young measure νx. Since the sequence ∇vi is uniformly
Lipschitz, the limit formula can be applied to all continuous functions.

The proof is then concluded using a rigidity result for W 1,n functions
which was first derived by Reshetnyak [35]. Instead of using the result, we
incorporate here the simple proof of his statement given by Kinderlehrer [25]
and Müller [32]. For a fixed representative ∇u0 let Ω0 be the set of Lebesgue
points, i.e. the set of points x0 ∈ Ω such that

lim
r→0

1

|Br|
∫

Br

|∇u0(x) −∇u0(x0)| dx = 0 . (3.7)

Furthermore, let ΩA be the set of points where E has vanishing density, i.e.
of points x0 ∈ Ω such that

lim
r→0

|B(x0, r) ∩ E|
|B(x0, r)| = 0 .

We claim that

x0 ∈ Ω0 ∩ ΩA implies ∇u0(x0) ∈ SO(n)A .

To see this we fix a sequence rj → 0 and consider the sequence of balls
Bj = B(x0, rj). We study the polyconvex function ϕ : R

n×n → R defined by

ϕ(ξ) = |ξ|n − nn/2 det ξ

(with |ξ|2 = Tr ξT ξ), which is nonnegative and vanishes only on matrices
which are scalar multiples of matrices in SO(n) (by isotropy it is enough
to consider diagonal matrices, for which this property follows from the
arithmetic–geometric mean inequality). Then for a fixed j we have

lim
i→∞

∫
Bj

ϕ(∇viA
−1)dx =

∫
Bj

∫
Rn×n

ϕ(ξA−1)dνx(ξ)dx .
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The measure νx is supported on K, and the function ϕ(ξA−1) takes only the
two values 0 and ϕ(BA−1) on it. Therefore

lim
i→∞

∫
Bj

ϕ(∇viA
−1)dx = ϕ(BA−1)

∫
Bj

νx(SO(n)B)dx

= ϕ(BA−1)|Bj ∩ E| . (3.8)

The function ϕ is polyconvex, and therefore∫
Bj

ϕ(∇u0A
−1)dx ≤ lim inf

i→∞

∫
Bj

ϕ(∇viA
−1)dx = ϕ(BA−1)|Bj ∩ E| .

We conclude

lim
j→∞

1

|Bj|
∫

Bj

ϕ(∇u0A
−1)dx = 0 .

But now (3.7) yields ϕ(∇u0(x0)A
−1) = 0. The same argument replacing the

function ϕ with det and − det shows that det(∇u0(x0)A
−1) = 1. But

ϕ(ξ) = 0 and det ξ = 1 implies ξ ∈ SO(n),

therefore ∇u0(x0) ∈ SO(n)A and the claim is proven. Reasoning the same
way in Ω \E we obtain that ∇u0 ∈ BV (Ω, K). Then, the conclusion follows
from the characterization of functions u0 with ∇u0 ∈ BV (Ω, K) given by
Dolzmann and Müller [16, Theorem 1.1].

We finally prove strong convergence of ∇vi. Let Fi = ∇vi(∇u0)
−1. Since

∇vi⇀∇u0 we have Fi⇀ Id in Lp, hence to prove strong convergence it suf-
fices to show that |Fi| → |Id| in Lp. We compute

lim
i→∞

∫
Ω

|Fi|pdx =

∫
Ω

∫
Rn×n

|ξ∇u−1
0 (x)|pdνx(ξ)dx = |Ω| |Id|p ,

since supp νx ∈ SO(n)∇u0(x). This concludes the proof.

3.2 Lower bound

This subsection is devoted to point (ii) of Theorem 3.1.

Proposition 3.3 (Lower bound). Let W satisfy (3.1) and let Ω be a
bounded, Lipschitz domain. Then, for all sequences εi → 0 and ui → u0

in L1, we have
lim inf

i→∞
Iεi

[ui,Ω] ≥ I0[u0,Ω] . (3.9)
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Figure 3.1: To prove the lower bound we first isolate rectangles around the
interfaces and then show that the energy per unit interfacial length does not
depend on the shape or size of the rectangle.

Sketch of proof. The argument is completely analogous to the one in [12, 13].
We only sketch the main ideas, which are illustrated in Figure 3.1.

From general u0 to a single interface in a rectangle. By the compactness
result, we only have to consider limiting functions u0 which are locally lami-
nates. For any η > 0, one can cover a fraction 1 − η of the total interfacial
length by finitely many rectangles, each of them containing a single interface
in the middle. Since η is arbitrary, and the total energy is larger than or
equal to the sum of the energy contained in the rectangles, it is sufficient to
prove the result for each such rectangle.

The rectangles come in four variants: the interface can have two ori-
entations, and A and B can be located on each side of the interface. We
identify them by the normal ν, which we take to be oriented from the A to
the B phase. For notational simplicity we assume ν = e2. Then, the optimal
limiting energy on a 2d× 2l rectangle is given by

Fν(d, l, R) = inf
{

lim inf
i→∞

Iεi
[ui, (−d, d) × (−l, l)] : εi → 0, ui → uν

0 in L1
}
,

where for R ∈ SO(2)

uν
0(x) =

{
RAx if x2 < 0

RQBx if x2 ≥ 0 ,

Q being the unique rotation such that A−QB = a⊗ e2 for some a ∈ R
2.
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Identification of relevant parameters. By the rotational invariance of W
the number Fν(d, l, R) is independent of R. Replacing u(x) by −u(−x) we
find that Fν = F−ν . The scaling and covering argument of [12] shows that
Fν(d, l, R) is independent of l and depends linearly on d. It is therefore
sufficient to evaluate it on a unit square and we find Fν(d, l, R) = 2dk(ν),
where k was defined in (3.4).

The proof of the lower bound is completely abstract, and based only on
the known structure of the limiting function. The argument does not bring
any control on low-energy sequences, which has to be obtained separately by
means of a rigidity estimate. This is the topic of the next section.

3.3 H1/2 rigidity

The main difficulty in proving Theorem 3.1 is to obtain the upper bound in
item (iii). The principal idea is to construct approximating sequences from
the energy-minimizing sequences of (3.4). If multiple interfaces are present, it
is necessary to interpolate between the minimizing sequences corresponding
to each interface. A matching with low energy is possible if the deformation is
sufficiently close to an affine function on a horizontal line, in H1/2. Building
upon the segment rigidity of Proposition 2.2, we shall now derive an optimal
rigidity estimate in H1/2 on lines, which will then be used in the next section
to obtain the upper bound.

The function φ appearing in the proposition will later be set to be the
distance dW induced by W , as defined in (3.6). In this subsection we use ξ
and ζ to denote horizontal and vertical coordinates, x = (ξ, ζ) ∈ R

2.

Proposition 3.4. Let Ω = (−d, d) × (−l, l) be a rectangle in R
2, A and

B have positive determinant, and φ ∈ C1(R2×2,R) be a function satisfying
φ(F ) ≥ c̄distp(F, SO(2)A) for some c̄ > 0, p ≥ 1. Then there are constants
c, η > 0 such that for every function u : Ω → R

2 with∫
Ω

φ(∇u) + |∇[φ(∇u)]| ≤ η (3.10)

there is a subset Y ⊂ (−l, l) of measure at least 3l/2 such that for any ζ ∈ Y,

min
Q∈SO(2), b∈R2

‖u−QAx−b‖2
H1/2(Γ0) ≤ c

∫
Ω

dist2(∇u, SO(2){A,B})dx , (3.11)

where Γ0 = (−d, d) × {ζ0}.
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Figure 3.2: The reference grid. Here K = 3, hence the largest triangles
have side l0 = 2d/3, height h0 = l0

√
3/2, and are located in the strip −2h0 ≤

ζ − ζ0 ≤ h0 = 2h1.

Proof. The proof is based on the segment rigidity of Proposition 2.2. The
main idea is to construct a function v which has small one-well energy and
the same trace as u on Γ0. This is done by defining v as the piecewise affine
interpolation of the values of u on the vertices of a suitable grid. The grid is
constructed in such a way that all grid edges are approximately rigid in the
sense of Proposition 2.2, which implies that the distance of ∇v from SO(2)A
is controlled by the distance of ∇u from K, in an L2 sense (see below).
Then, by the one-well Friesecke-James-Müller rigidity stated in (2.31) we
obtain an equivalent control of the distance of ∇v from a constant, and the
trace theorem gives the estimate for v in H1/2(Γ0). Since the grid can be
chosen so that it refines towards Γ0, we get u = v on Γ0 and the estimate for
u.

We now start the proof. By a change of variables we can assume A = Id,
and we focus on the case ζ0 > 0. For a large subset of ζ0’s in (0, l) we have
(see [13, Step 2 of Lemma 4.5])

1

δ

∫
(−d,d)×(ζ0−δ,ζ0)

φ+ |∇φ| ≤ cη (3.12)

for all δ ∈ (0, l).

Construction of the reference grid. We construct a triangular grid as
indicated in Figure 3.2, which is based on equilateral triangles and refines
towards the line Γ0 = (−d, d) × {ζ0}. Precisely, let K be the integer part of
1 + d/l, and set lk = 2d 2−k/K, hk = lk

√
3/2. On each line ζ = ζ0 − 2hk

we fix K2k + 1 equispaced vertices (the spacing being lk), and join them as
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Figure 3.3: The inner part of the reference grid. The dashed rectangle
represents Ω, the circles represent the balls Bm.

illustrated in the figure to form triangles which are either equilateral or have
angles of 30, 60 and 90 degrees. The grid covers (−d, d)×(ζ0−min(l, d)/2, ζ0),
is contained in Ω, and the length of each edge is controlled from above and
below by its distance hk from Γ0.

For later use we now show that (3.12) implies a local control of φ in L1

with the optimal scaling. We consider an interval Yk = (ζ0 − hk, ζ0) and
rewrite (3.12) as∫

Yk

e(ζ) dζ ≤ cηhk , where e(ζ) =

∫ d

−d

φ(ξ, ζ) + |∇φ(ξ, ζ)| dξ .

Hence there is ζk ∈ Yk such that e(ζk) ≤ cη. The one-dimensional embedding
W 1,1 ⊂ L∞ yields that φ(·, ζk) is bounded by c′η pointwise on (−d, d). The
Poincaré inequality for the square S = (ξ − hk, ξ) × (ζ0 − hk, ζ0) yields, for
arbitrary ξ ∈ (−d+ hk, d),∫

S

φ dx ≤ h2
k‖φ(·, ζk)‖L∞(−d,d) + hk

∫
S

|∇φ| dx ≤ cηh2
k. (3.13)

Construction of the perturbed grid. Since the segment-rigidity of Propo-
sition 2.2 is an interior estimate, we restrict to the triangles whose closure
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is entirely contained in the open set Ω, as indicated in Figure 3.3. We con-
sider balls Bm = B(vm, rm) centered in the grid points (vm)m∈N, where the
radius rm is lk/10 for vertices of level k, and apply Proposition 2.2 to each
pair of neighboring vertices. Let n = (m,m′) denote one pair of neighbor-
ing vertices at level k. Then by (3.12,3.13) we can apply Proposition 2.2
to it, provided that η is chosen appropriately. Hence there are many pairs
(wm, wm′) ∈ Bm ×Bm′ such that the segment [wm, wm′] is rigid.

We now choose inductively one point wm in each Bm. We start by saying
that all points of all balls are possible choices in step 0. At step m we set wm

as one of the possible choices in step m in the ball Bm with the additional
condition that wm forms a rigid pair with many points of all neighboring
balls Bm′ with m′ > m. This is possible provided that in Bm there are many
possible choices in step m, since there is only a finite number of neighbors.
The set of possible choices in step m+ 1 then consists of the possible choices
in step m without those w ∈ Bm′ such that m′ > m is a neighbor of m, but
(w,wm) is not a rigid pair. Since each point has at most seven neighbors, we
reduce the possible choices of each ball Bm finitely many times by a small
set, whence at all steps there remain many possible choices in each ball where
the choice has not been made yet.

The piecewise linear interpolation. For every edge en = [x, y] of level k,
Proposition 2.2 yields∣∣∣∣ |u(x) − u(y)|

|x− y| − 1

∣∣∣∣ ≤ c
1

l2k
‖dist(∇u,K)‖L1(ωn) ≤ c

1

lk
‖dist(∇u,K)‖L2(ωn).

Here ωn is a ball containing the edge en, whose radius is less than the length
of en. Each point in the domain is contained in at most finitely many such
balls.

We conclude that for every triangle T of the perturbed grid, the linear
interpolation v : T → R

2 between the values of u on the vertices is close to
a rigid motion. By (3.13) we get det∇v > 0, hence

‖dist(∇v, SO(2))‖L2(T ) ≤ c
3∑

i=1

‖dist(∇u,K)‖L2(ωni )
.

We take squares and sum over all triangles of level k to find∫
(−d,d)×(ζ0−lk,ζ0−lk+1)

dist2(∇v, SO(2)) dx

≤ c

∫
(−d,d)×(ζ0−2lk,ζ0− 1

4
lk)

dist2(∇u,K) dx .
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Summing over k yields∫
Ω

dist2(∇v, SO(2))dx ≤ c

∫
Ω

dist2(∇u, SO(2){A,B}) dx . (3.14)

By the Friesecke-James-Müller rigidity (2.31) there is a rotation Q ∈ SO(2)
such that the left-hand side provides a bound for the distance to Q,∫

Ω

|∇v −Q|2dx ≤ c

∫
Ω

dist2(∇u, SO(2){A,B}) dx . (3.15)

The thesis follows by the trace theorem.

3.4 Upper bound

We now prove the upper bound for Theorem 3.1. The construction is essen-
tially the same as in the geometrically linear case [13]; for the convenience of
the reader we sketch the main ideas and refer to [13] for details.

Proposition 3.5. Let W satisfy (3.1) and (3.2), Ω ⊂ R
2 be open, bounded,

and strictly star-shaped. Then, for every function u0 and every sequence
εi → 0 there exists a sequence ui → u0 in L1(Ω) such that

lim
i→∞

Iεi
[ui,Ω] ≤ I0[u0,Ω] .

Sketch of proof. We consider only the case I0(u0,Ω) < ∞ since the other
case is trivial. Thus we are given u0 ∈ L1(Ω) with ∇u0 ∈ BV (Ω, K), i.e. u0

is locally a laminate.

From many interfaces to one interface. We have to construct a sequence
ui → u0 such that Iεi

[ui] → I0[u0]. By a density argument which ex-
ploits star-shapedness it is sufficient to consider limiting functions which
have finitely many interfaces which do not meet at the boundary.

We consider disjoint rectangular boxes, one covering each interface.
We claim that in each such box, which after translation and assuming
for notational simplicity that the interface is parallel to e1 has the form
R = (−d, d) × (−l, l), we can find wi converging to u0 such that wi is affine
away from the interface and has the optimal limiting energy, i.e.

Iεi
[wi, R] → 2dk(e2) , wi = Ii ◦ u0 for ζ ≥ 4

5
l , wi = I ′i ◦ u0 for ζ ≤ 4

5
l ,

(3.16)
where Ii and I ′i are isometries which converge to the identity as i → ∞.
Then, it is sufficient to join these functions by affine functions with gradient
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in K (which have zero energy) and to compose each of them by a rigid
motion close to the identity. To see this, we first observe that if Ji is any
sequence of isometries converging to the identity, we can assume that (3.16)
holds with I ′i = Ji (it suffices to compose wi with Ji times the inverse of I ′i).
Now, consider for concreteness the case of finitely many parallel interfaces
in a convex domain, and choose a unique l smaller than half the distance
between them. We sort the interfaces in order of ascending x2. Below the
first interface (i.e. at smaller x2) we set ui = u0. Around the first interface we
use (3.16) with I ′i set equal to the identity, and define I1

i as the corresponding
isometry Ii on the upper side of the interface. Then we set ui = I1

i ◦ u0

between the first and the second interface, and around the second interface
we use again (3.16), now with I ′i = I1

i . We then let I2
i be the corresponding

isometry on the upper side of the interface, and continue. This procedure
can be completed since the domain is simply connected, and all isometries
converge to the identity since there are finitely many interfaces. Further, no
discontinuity in u or ∇u is inserted in the procedure, and all affine pieces have
gradient in K, hence the total energy converges to the sum of the energies
of the single interfaces. Therefore it only remains to prove (3.16).

One interface: proof of (3.16). Consider one box R = (−d, d) × (−l, l)
which contains a single interface in the center. By the definition of k(ν) and
the compactness result there are sequences εi and ui such that, as i→ ∞,

Iεi
[ui, R] → 2dk(ν) and

∫
R

|∇ui −∇u0|2 dx→ 0 .

Since the limiting energy does not depend on l, it is clear that the energy is
concentrated in the smaller box (−d, d)× (−l/2, l/2). Therefore in the strip
ω = (−d, d) × (l/2, l) the energy converges to zero, and in particular∫

ω

1

εi
W (∇ui) + |∇dW (∇ui, A)| ≤ 2Iεi

[ui, ω] → 0 (3.17)

where dW was defined in (3.6). By Proposition 3.4 applied on the domain ω
with φ(·) = dW (·, A), for each i there are many ζi ∈ (l/2, 3l/4) for which

1

εi
‖ui − Zi‖2

H1/2(Γi)
→ 0 , ∇Zi ∈ SO(2)B ,

for some affine Zi. Here and below Γi = (−d, d) × {ζi}. Further, we can
choose ζi such that

1

εi

∫
(−d,d)×(ζi,ζi+εi)

|∇ui −∇u0|2 + εi|∇2ui|2dx→ 0 (3.18)
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and ∫
Γi

εi|∇2ui|2 + |∇ui −∇u0|2dx→ 0 . (3.19)

Since ∇Zi and ∇u0 only differ by a rotation, this implies ∇Zi → ∇u0.
The claimed (3.16) follows then from Lemma 5.5 of [13] (and repeating

the argument for ζ < 0). For completeness we repeat the main ideas here.
In a first step one constructs functions vi : ωi = (−d, d) × (ζi, l) such that
vi = Zi for ζ > 4l/5, vi = ui on ζ = ζi, and Iε[vi, ωi] → 0. In this step one
controls the nonconvex part of the energy by the trace theorem, i.e.∫

ωi

1

εi
W (∇vi)dx ≤ c

∫
ωi

1

εi
|∇vi −∇Zi|2dx ≤ c‖ui − Zi‖2

H1/2(Γi)
→ 0 .

The expression |∇vi − ∇Zi|2 is convex, hence is not increased by mollifica-
tion. By the first term in (3.19) one can mollify so that the boundary values
on Γi are unchanged and the singular perturbation

∫
ωi
εi|∇2vi|2dx becomes

infinitesimal. The precise construction can be done either by a suitable mol-
lification of the piecewise affine construction used in the proof of the H1/2 es-
timate, or by harmonic extension, or explicitly in Fourier space, as explained
in Lemma 5.4 of [13]. In a second step one defines wi as an interpolation
between ui and vi on the strip ζ ∈ (ζi, ζi + εi), and exploits (3.18) to control
the error terms. The argument is finally repeated for negative ζ , hence (3.16)
follows (for the same sequence εi → 0 chosen at the beginning of this step).

It remains to show that one can construct ui for any sequence εi → 0.
This is done by means of an upscaling and compactness argument for which
we refer to Proposition 5.6 of [13].
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