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Abstract: We consider rate-independent crystal plasticity with
constrained elasticity, and state the variational formulation of
the incremental problem. For generic boundary data, even the
first time increment does not admit a smooth solution, and fine
structures are formed. By using the tools of quasiconvexity, we
obtain an explicit relaxation of the first incremental problem
for the case of a single slip system. Our construction shows
that laminates between two different deformation gradients are
formed. Plastic deformation concentrates in one of them, the
other is a purely elastic strain. For the concrete case of a simple-
shear test we also obtain a completly explicit solution.

1. Introduction

This paper studies rate-independent evolution of elastoplastic bodies. We con-
sider the simplest case where the kinematics is maximally restricted in the sense
that only one slip-system is active and the only allowed elastic deformations are
rigid body rotations, within the standard framework of crystal plasticity. Ap-
proximate solutions are constructed by considering sequences that minimize the
sum of elastic energy and dissipated energy in the limit, the only source of dis-
sipation being plastic deformation. The corresponding variational problems are
denoted incremental problems. Due to the interplay of the directional depen-
dence of the plastic deformation with the rotational invariance of the elastic part
the existence of minimizers can not be expected. Minimizing sequences develop
fine scale oscillations, which are analogous to microstructures found in models for
solid-solid phase-transitions. Regular lamellar structures between phases with a
different plastic deformation have been observed at large strains in a wide variety
of metals, see e.g. [9, 1] and references therein.

The lack of minimizers for the incremental problems leads to instabilities in
numerical algorithms that attempt to follow the time-continuous evolution of the
elastoplastic deformation. A standard approach to overcome this difficulty is to
consider a relaxed evolution problem where the original incremental problem is
replaced by the lower semicontinuous envelope, see e.g. [9, 10, 5, 2].
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The main objectives of this paper are (i) to demonstrate rigorously that a
simple multi-dimensional model predicts the formation of a single-laminate mi-
crostructure; and (ii) to give a partial justification of numerical methods that
are based on the computation of the relaxation of the incremental problems.

The first objective is achieved by determining an explicit formula for the qua-
siconvex envelope of the first incremental problem in the case where only one
slip-system is active (in two directions) and the elastic strains are negligible. The
latter corresponds to the assumption that the elastic energy is infinite whenever
the elastic part of the deformation gradient (in a multiplicative decomposition) is
not a rotation. We show that microstructure states can approximate a variety of
affine deformations of the type y(x) = Fx. In particular, in two dimensions this
is possible for F in a relatively open subset of the volume-preserving affine maps
{F : det F = 1}. We show that the relaxation is achieved by first-order laminates
and give an explicit formula for the dependency of the lamination-normal on the
boundary condition (Theorem 3.1).

The second objective is achieved by considering the evolution problem that is
associated to the relaxed incremental problem. We construct explicit solutions
for the relaxed evolution problem that can not be interpreted as simple single-slip
motions. These solutions correspond to time-evolving microstructure. In addi-
tion we prove that there exist sequences of approximate solutions for the original
single-slip model that not only converge weakly to the relaxed solution, but also
have the property that the associated plasticity-induced dissipation converges to
the dissipation predicted by the relaxed system. The analysis is based on the
construction of Lipschitz-maps that form a perfect laminate except on a compact
set with arbitrary small measure (Theorem 3.5).

Our analysis has nontrivial implications also for crystals with several slip sys-
tems. In particular, one can see that in two dimensions, three slip systems
generate an effective response which is identical to Tresca plasticity (i.e. to the
response obtained by assuming infinitely many slip systems), and that when
finitely many slip systems are active almost every macroscopic deformation will
lead to the creation of microstructures. These and further issues will be discussed
in a forthcoming publication.

2. Rate-independent finite plasticity for single crystals with

one slip system

In this introductory section we briefly review for the case of interest here
the formulation of the incremental problem for rate-independent finite plasticity,
following Ortiz and Repetto [9] and Miehe, Schotte and Lambrecht [5]. See [2, 6]
for a mathematically oriented treatment, and [4] for a treatment including higher
gradients.

Let Ω ⊂ Rd be the reference configuration of an elastoplastic body, y : [0, T ]×
Ω → Rd be the time dependent total deformation (in the following, d is 2 or 3),
and (γ, Fp) : [0, T ]×Ω → RNs+d×d be a set of internal variables (Ns is the number
of active slip systems, see below). Finite plasticity is based on the assumption
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that the local deformation gradient F = ∇y can be decomposed multiplicatively
into a plastic and an elastic part,

F = FeFp. (2.1)

As customary we assume that the plastic deformation Fp conserves the volume,
det Fp(x) = 1. The decomposition (2.1) is not determined uniquely by the defor-
mation y, but it depends on the internal variables γ as well, which in turn can
be obtained as the solution of an initial-boundary value problem that is based
on additional mechanical assumptions.

In crystalline plasticity the set of admissible stresses Q is determined by the
slip-systems of the crystal,

Q =
⋂
α

{|sα · Qmα| ≤ τα} ⊂ Rd×d ,

where (sα, mα, τα)α=1...N is a family of slip systems, sα ∈ Rd, mα ∈ Rd, τα ∈
(0,∞) are slip direction, slip plane normal and critical resolved shear stress
corresponding to slip system α. The volume preservation results in the constraint
sα · mα = 0.

For the case of rigid elasticity we consider here, however, the stress is not a
well-defined quantity. We resort therefore to the variational formulation. This
is best understood, and typically applied, by considering a time-discretization
0 = t0 ≤ . . . ≤ tn = T . Given the state (y(tk), γ(tk), Fp(tk)) at time tk, the
deformation y at time tk+1 and the internal variables γ, Fp in the time interval
(tk, tk+1) minimize

I ′
k(y, Fp, γ) :=

∫
Ω

We(∇yF−1
p ) +

∫
Ω

∫ tk+1

tk

φ(γ̇, Ḟp, γ, Fp) , (2.2)

where the arguments of the first integral are evaluated at the final time tk+1. The
deformation obeys boundary conditions y = ybdry(tk+1) on ∂Ω. Here, We is the
elastic energy, Wp characterizes the plastic stored energy, and φ the dissipation.
Further, the solution to the sequence of incremental problems satisfies initial
conditions (typically y = y0, Fp = Id, γ = 0 for t = 0). The dissipation function
φ relates the evolution of the plastic deformation to that of the internal variables,
which in single-crystal plasticity are related by the classical flow rule [11]

ḞpF
−1
p =

Ns∑
α=1

γ̇αsα ⊗ mα . (2.3)

Indeed, we take

φ(γ̇, Ḟp, γ, Fp) =

⎧⎨⎩
∑

α

|γ̇α|τα if (2.3) holds

∞ else.
(2.4)

The existence of a time-continuous limit of (2.2) is a deep and interesting issue,
which we do not address here (see e.g. [6] and references therein). We instead
focus on a precise analysis of the time-discrete problem, which is the one used in
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most concrete computations. For the present purposes it is sufficient to observe
that Fp and γ can be assumed to be affine functions of time, in each time interval,
and at each point in space.

We now specialize this general framework to elastically rigid single-slip plas-
ticity. First, we consider a single slip system with two opposite orientations, i.e.
Ns = 2 and s1⊗m1 = −s2⊗m2 = s⊗m, where s and m are two fixed orthogonal
unit vectors. The latter condition permits an explicit integration of the plastic
flow rule (2.3), leading to

Fp(t) = Id + γ(t)s ⊗ m (2.5)

where γ(t) = γ1(t)−γ2(t). From the variational viewpoint, (2.5) holds whenever
the second integral in (2.2) is finite. This local relation between γ and Fp permits
to eliminate one of them from the variational problem.

The second simplification is the assumption of infinitely hard elastic response,
which corresponds to a decoupling of the elastic and plastic problems, as proposed
by Ortiz and Repetto [9]. The elastic part of the deformation gradient Fe is then
restricted to be a rigid-body rotation, and

We(F ) =

{
0 if F ∈ SO(d)

∞ else.
(2.6)

Due to the rigidity of the elastic energy (2.6) we can minimize out locally Fe,
and express both Fp and γ in terms of ∇y.

Lemma 2.1. If Ik(y) is finite, then ∇y ∈ M (d) a.e., where

M (d) = {F ∈ Rd×d | F = R(Id + γs ⊗ m), R ∈ SO(d), γ ∈ R}. (2.7)

Conversely, let F ∈ M (d). Then, there exists a unique pair (R, γ) ∈ SO(d) × R

such that F = R(Id + γs ⊗ m) holds.

Proof. The first part is a direct consequence of (2.5) and (2.6). The second
follows from the relation

γ = (Fm) · (Fs) . (2.8)

�

From now on γ and Fp are implicitly assumed to be given in terms of ∇y via
(2.5) and (2.8). The incremental problem (2.2) then becomes

Ik(y) =

∫
Ω

Wep(∇y;∇y(tk)) , (2.9)

where

Wep(F ; F0) =

{
|γ(F ) − γ(F0)| if F, F0 ∈ M (d)

∞ else
(2.10)

and γ(F ) is given by (2.8). We observe that, provided ∇y(tk) is constant on
some part of the domain, we can assume it to be the identity, since Wep(F ; F0) =
Wep(FF−1

0 ; Id) for all admissible F0. The main aim of this paper is the study of
minimizing sequences for (2.9-2.10). Simple counting degrees of freedom shows
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that the existence of solutions can only be expected for very special boundary
conditions. To see that, we consider the homogeneous case where ybdry(t, x) =
F (t)x. Since dim M (d) = 1

2
d(d− 1) +1 is smaller that d2 − 1 for d ≥ 2, it is clear

that the set of paths t 	→ F (t) ∈ Rd×d, det F (t) = 1 such that F (t) ∈ M (d) is
ungeneric.

3. The relaxation of the time-incremental problem

We now present the main results of this paper, which concern the behavior of
minimizing sequences for the incremental problem (2.9-2.10).

For generic boundary conditions, the minimization problem (2.9) admits no
minimum, and minimizing sequences form fine-scale structures. An explicit
computation is shown below. Such a behavior is frequent in nonlinear elas-
ticity, especially in the study of shape-memory alloys; the mathematical study
of such phenomena has been based on the concept of quasiconvexity. A func-
tion W : Rd×d → R ∪ {∞} is said to be quasiconvex if affine deformations are
minimizers with respect to their own boundary conditions, i.e. if

W (F ) ≤ 1

Ω

∫
Ω

W (∇φ) (3.1)

for all φ ∈ W 1,∞(Ω, Rd) such that φ(x) = Fx for x ∈ ∂Ω. It is easy to see
that this definition does not depend on the chosen open set Ω. The matrix F is
the average of ∇φ over Ω: this definition differs from the usual one of convexity
by means of Jensen’s inequality in that the argument in the right-hand side is
required to be a gradient field. The quasiconvex envelope W qc of W is defined as
the largest quasiconvex function which is less than or equal to W , and determines
the effective, macroscopic behavior. For a more detailed presentation of these
and related concepts, see [7].

We now assume that at a given time tk the deformation gradient ∇yk takes,
in an open set ω ⊂ Ω, some value F0 ∈ M (d), and compute the relaxation of Ik.
For the first incremental problem the initial condition gives F0 = Id on all of Ω.
We state separately the two- and the three-dimensional results.

Theorem 3.1. In two dimensions, the quasiconvex envelope of Wep(·, F0) (de-
fined in (2.10)) is given by

W qc(F, F0) =

{
λmax(FF−1

0 ) − λmin(FF−1
0 ) if F, F0 ∈ N (2)

∞, else

where λmax and λmin are the maximal and minimal nonnegative singular values
of FF0, and

N (2) = {F ∈ R2×2 | det F = 1, |Fs| ≤ 1}.
The rank-one convex and the polyconvex envelopes, W rc and W pc, also agree with
W qc.

We recall that the rank-one convex envelope W rc(F ) is defined as the largest
function below Wep which is convex along rank-one lines, i.e. for all F ∈ Rd×d,
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a, b ∈ Rd, the function W rc(F + ta ⊗ b) is convex in t. Rank-one convexity
corresponds to the linearization of quasiconvexity, i.e., is equivalent to (3.1) up
to second order in ∇φ − F . The polyconvex envelope is the largest function be-
low Wep that can be written as a convex function of F , its determinant, and its
minors, i.e., for d = 2 such that W pc(F ) = h(F, det F ), with h : R5 → R convex,
and for d = 3 such that W pc(F ) = h(F, cof F, det F ), with h : R19 → R con-
vex. Since the determinant and the cofactors of a gradient field are divergences,
their integral depends only on the boundary values and polyconvex functions are
quasiconvex.

In three dimensions the situation is more rigid.

Theorem 3.2. In three dimensions, the function Wep(·, F0) is quasiconvex. Its
rank-one convex and polyconvex envelopes are given by

W pc(F, F0) = W rc(F, F0) =

{
λmax(FF−1

0 ) − λmin(FF−1
0 ) if F, F0 ∈ N (3)

∞, else

where λmax and λmin are the maximal and minimal nonnegative singular values
of FF0, and

N (3) = {F ∈ R3×3 | det F = |F (s ∧ m)| = | cof F (s ∧ m)| = 1, |Fs| ≤ 1}.

The proofs of Theorems 3.1 and 3.2 are based on the construction of match-
ing upper and lower bounds. Lower bounds on the quasiconvex envelope can
be derived by constructing suitable polyconvex functions. Upper bounds are
obtained by explicitly constructing test functions. The simplest construction is
a simple laminate, i.e., a test function v whose gradient ∇v takes essentially
only two values F± (except for a negligible small region around the boundary).
Continuity of v across interfaces enforces F+ − F− to be rank one. A fine-scale
mixture of F± can approximate the affine deformation Fx, and hence be made
to satisfy the boundary condition by a small correction around the boundary, if
µF+ +(1−µ)F− = F , where µ ∈ [0, 1] is the volume fraction in which ∇v = F+.
The only subtle point here is that the small correction around ∂Ω has to be
chosen so as to remain in the set M (d) where the energy is finite. In two di-
mensions this can be done, using the convex integration results by Müller and
Šverák, see Theorems 3.4 and 3.5 below. In three dimensions instead we show
that any Lipschitz function whose gradient is almost everywhere in M (3) is affine,
hence no such boundary layer can be constructed, and the quasiconvex envelope
differs from the lamination-convex one. We remark that this results depends
crucially on the assumption of rigid elasticity. If one would replace ∞ with a
large constant in (2.6), or define We as a large multiple of the squared distance
from SO(d), then the rigidity result would fail, and the quasiconvex envelope
would be less than the rank-one convex one.

Proof of Theorem 3.1. The result clearly depends only on FF−1
0 . We write Wep(F ) =

Wep(F, Id), and study Wep(F ).
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Firstly, we note that the conditions defining N (2) are polyconvex, in the sense
that the function

h(F, g) =

{
0 if g = 1 and |Fs| ≤ 1

∞ else

is convex on R5, and N (2) = {F : h(F, det F ) = 0}. The proof of the lower bound
is at this point immediate, since

|λ1(F ) − λ2(F )| =
√
|F |2 − 2 detF =

√
(F11 − F22)2 + (F12 + F21)2

is a convex function on R2×2, it equals W on M (2) (indeed, |γ(F )|2 = |F |2 − 2 =
|F |2 − 2 detF ), and it equals W qc on N (2). This constitutes automatically also
a lower bound for W rc and W pc.

To prove the upper bound, we give an explicit construction of a laminate. We
take F ∈ N (2) \ M (2) and seek unit vectors a, b such that

Fµ = F + µa ⊗ b

is in M (2) for two values of µ, with different sign. The constraint det Fµ = 1
corresponds to a⊥Fb⊥ = 0 (here and below, (x, y)⊥ = (−y, x)). To determine
a and b, we use the fact that this laminate is optimal iff W qc is linear along it.
Hence we impose that

|Fµ|2 − 2 = |F |2 − 2 + 2µ(aFb) + µ2 (3.2)

is the square of a binomial in µ, i.e. (aFb)2 = |F |2 − 2. In turn, and using the
determinant constraint, this gives

(a⊥Fb)2 + (aFb⊥)2 = 2

which corresponds to |Fb⊥| = 1, which has two solutions for b (apart from an
irrelevant global sign). From the determinant constraint we get then a = Fb⊥

(again, with an irrelevant sign freedom).

Now observe that

q(µ) = |Fµs|2 = (b · s)2µ2 + 2µ(b · s)(a · Fs) + |Fs|2
is quadratic in µ, and its leading coefficient is strictly positive for all F ∈ N (2) \
M (2) (if b · s = 0, then b⊥ = ±s, which gives |Fs| = |Fb⊥| = 1, i.e. F ∈ M (2)).
Since q(0) < 1, it follows that there are two values µ± with different sign such
that q(µ±) = 1, i.e. Fµ± ∈ M (2). We had already checked that the expression

given in the statement equals Wep on M (2), and since |λ1 − λ2| is linear along
the segment [Fµ−, Fµ+ ] we obtain for all F in that segment a simple laminate
between Fµ− and Fµ+ with energy λmax(F ) − λmin(F ) (see Section 4 for a more
explicit characterization of the constructed laminate in a specific example). This
concludes the construction of the laminate, and hence the upper bound on W rc

and W pc.

To conclude the proof of the upper bound for the quasiconvex envelope W qc,
we still need to show that for any ε > 0 we can construct a test function v :
Ω → R2 with boundary values Fx so that

∫
Wep(∇v) is less than |Ω|W qc(F )+ ε.
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The construction strongly relies on the convex integration results by Müller and
Šverák. We proceed in two steps. First, by Theorem 3.5 for any small δ we can
obtain a piecewise affine function u1 whose gradient is everywhere in N (2), and
which on a large subset Ωδ coincides with the laminate between A and B. Indeed,
we choose v = s, Fµ± as A and B. The vectors As and Bs have unit length, but
are different since their weighted average Fs does not have unit length. Then,
from Theorem 3.5 we obtain |∇u1s| ≤ 1, which gives ∇u1 ∈ N (2). The closeness
of ∇u1 to [A, B] further shows that ∇u1 ∈ U (k) a.e., where

U (k) =
{
F ∈ R2×2 : det F = 1, |Fs| ≤ 1, |Fs⊥|2 < k2

}
. (3.3)

and k = 1+max(|A|, |B|). We then apply Lemma 3.3 to each affine piece of ∇u1

where ∇u1 �= M (2). We obtain u2 such that its gradient is everywhere in M (2),
uniformly bounded, and on Ωδ still coincides with the laminate above. Then, it
is clear that ∫

Ω

Wep(∇u2) ≤ |Ωδ| (λWep(A) + (1 − λ)Wep(B)) + δk.

Since δ can be made arbitrarily small, this concludes the proof. �
Lemma 3.3. For any Ω ⊂ R2 open, k > 0 and F in the set U (k), defined in (3.3)
above, there is v ∈ W 1,∞(Ω, R2) such that v = Fx on ∂Ω and ∇v ∈ U (k) ∩ M (2)

a.e.

Proof. This follows from Theorem 3.4 below by Müller and Šverák, if we can
show that the sequence

U
(k)
j =

{
F ∈ R2×2 : det F = 1, 1 − 2−j < |Fs| < 1, |Fs⊥|2 < k2

}
.

constitutes (as j → ∞) an in-approximation of U (k) ∩M (2). Indeed, if Fj ∈ U
(k)
j

and Fj → F , then |Fs| = 1, hence F ∈ U (k) ∩ M (2). We now show that F ∈ Uj

can be obtained as a simple laminate supported in Uj+1. To do so, we define

Fµ = F + µ(Fs⊥) ⊗ s

and observe that |Fµs⊥| and det Fµ do not depend on µ, whereas

|Fµs|2 = |Fs|2 + 2µ(Fs) · (Fs⊥) + µ2|Fs⊥|2
By assumption |Fs⊥|2 > 1 and |Fs| < 1, hence we find two values of µ with
opposite sign such that Fµ lies in Uj+1, and the proof is concluded. �

We now come to the proof of Theorem 3.2.

Proof of Theorem 3.2. As above, we denote Wep(F ) = Wep(F, Id), and change
variables so that s = e1, m = e2.

We first show that Wep(F ) is quasiconvex. To do this, we need to show that∫
Ω

Wep(∇u) ≥ Wep(F )

for all Lipschitz vector fields u : Ω = [0, 1]3 → R3 such that u(x) = Fx on ∂Ω
(since quasiconvexity does not depend on the domain we can focus on the unit
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cube). If the integral is infinite, there is nothing to prove. We can therefore
assume that Wep(∇u) is finite almost everywhere. We now show that in this
case u is affine, hence equality holds. Indeed, if ∇u ∈ M (3) a.e. we have

|Fe3| =

∣∣∣∣∫
Ω

∂3u

∣∣∣∣ ≤ ∫
Ω

|∂3u| = 1 ,

| cof Fe3| =

∣∣∣∣∫
Ω

∂1u ∧ ∂2u

∣∣∣∣ ≤ ∫
Ω

|∂1u ∧ ∂2u| = 1 ,

and

det F =

∫
Ω

det∇u = 1 .

Since det F = Fe3 · cof Fe3 ≤ |Fe3| | cof Fe3|, equality holds throughout, and
in particular we get ∂3u = Fe3 a.e., which implies u(x1, x2, x3) = u(x1, x2, 0) +
Fe3x3. The boundary condition on x3 = 0 then gives u(x) = Fx on Ω, and the
proof is concluded.

We now come to the second part of the statement. The inequality W rc ≥ W pc

follows from general arguments, hence it is sufficient to show that W rc is less or
equal, and W pc larger or equal, than the function given in the statement. Firstly,
we note that N (3) is a polyconvex set (i.e. it is the intersection of sublevel sets
of polyconvex functions). Indeed,

Ñ = {F ∈ R3×3 : det F = 1, |Fe3| ≤ 1, | cof Fe3| ≤ 1, |Fe1| ≤ 1}.
is clearly polyconvex. But N (3) = Ñ , since det F = Fe3 · cof Fe3 = 1. The
polyconvexity of N (3), together with the fact that W is infinite outside M (3) ⊂
N (3), implies that W pc = W rc = +∞ outside N (3). Hence we only need to
consider matrices inside N (3), which is a two-dimensional problem. Indeed, if
F ∈ N (3), then

F =

(
F̃ 0
0 1

)
where F̃ ∈ N (2). Replacing F with F̃ , the construction of the laminate done in
two dimensions applies also here, and gives the desired upper bound on W rc and
W pc. �

Before concluding this Section, we state the results regarding the constrained
construction which has been used in the construction above.

Theorem 3.4 ([8], Theorem 1.3). Let Σ = {F ∈ Rd×d : det F = 1}, and let
K be a subset of Σ. Suppose that Ui is an in–approximation of K, i.e. the Ui

are open in Σ, uniformly bounded, Ui is contained in the rank–one convex hull
of Ui+1, and Ui converges to K in the following sense: if Fi ∈ Ui and Fi → F ,
then F ∈ K. Then, for any F ∈ U1 and any open domain Ω ⊂ Rd there exists a
Lipschitz solution of the partial differential inclusion

Du ∈ K a.e. in Ω

u(x) = Fx on ∂Ω .
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The following result is obtained [8] (Theorem 6.1 and Remark 2 thereafter)
without the convex constraint on |(∇u)v|. We give a full proof in the appendix.

Theorem 3.5. Let A, B ∈ R2×2, with det A = det B = 1 and rank(A − B) = 1,
v ∈ R2 be such that |Av| = |Bv| and Av �= Bv, and Ω be an open domain in
R2. For any λ ∈ (0, 1), and any δ > 0, there are h0 > 0 and Ωδ ⊂ Ω, with
|Ω \ Ωδ| ≤ δ, such that the restriction to Ωδ of any simple laminate between the
gradients A and B with weights λ and 1 − λ and period h < h0 can be extended
to a finitely piecewise affine u : Ω → R2 so that u = (λA + (1 − λ)B)x on ∂Ω
and det∇u = 1, |(∇u)v| ≤ |Av| = |Bv|, and dist(∇u, [A, B]) ≤ δ on Ω.

By finitely piecewise affine we mean that the domain can be decomposed in
finitely many pieces such that the function is affine on each of them. A simple
laminate of period h is a function of the form

y(x) = (λA + (1 − λ)B)x + ahχλ

(
n · x + c

h

)
where A − B = a ⊗ n, and χλ(t) is a continuous, one-periodic real function of t
such that χ′ = 1 − λ for t ∈ (0, λ), χ′ = −λ for t ∈ (λ, 1).

4. Sequence of incremental problems and explicit solution for

simple shear

Theorems 3.1 and 3.2 show that existence of minimizers cannot be expected
even for a single incremental problem, and give an explicit relaxation formula.
We consider now the full sequence of incremental problems, and define a simple
relaxation scheme for the sequence. For the concrete case of simple shear, this
leads to an explicit solution. Concrete computations are done here only in two
dimensions.

Given an initial condition y0, and a small positive number ε, an approximate
solution of the sequence of incremental problems is a sequence {yk}k=1,...,K such
that yk+1 is an approximate minimizer of

Ik(y) =

∫
Ω

Wep(∇y;∇yk), (4.1)

in the sense that
Ik(yk+1) ≤ inf Ik(y) + ε .

We observe that in the single-slip case, one has

K−1∑
k=0

Wep(∇yk+1,∇yk) ≥ Wep(∇yK, Id) (4.2)

If equality holds, replacing Wep(∇y,∇yk) with the simpler Wep(∇y, Id) in each
minimization problem (4.1) corresponds to an irrelevant shift by a constant. In
turn, equality in (4.2) is guaranteed if γ is locally monotone in t, and ∇y is
always in the allowed set M (d). This is a condition that can be directly checked
on an explicitly known candidate minimizing sequence yk.
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Assume now that the macroscopic deformation is homogeneous, and that there
is a minimizing sequence which at each time step is a laminate in most of the
domain. To be precise, given a macroscopic deformation ybdry(x, t) = F (t)x, we

seek y
(ε)
k such that ∇y

(ε)
k takes only two rank-one connected values, which we

call F ε,k
± , with volume fractions µε,k and 1−µε,k. The average gradient coincides

with the one imposed on the boundary provided that

µε,kF ε,k
+ + (1 − µε,k)F ε,k

− = F (tk) . (4.3)

We show below that for approximate minimizers this simpler condition can re-
place the Dirichlet boundary conditions.

The displacement field can be explicitly written as (dropping the index (ε, k))

y(x) = (µF+ + (1 − µ)F−)x + ahεχµ

(
n · x + c

hε

)
where F+−F− = a⊗n, with |n| = 1, c = cε,k ∈ R, hε sets the scale of the laminate,
and χµ(t) is a continuous, one-periodic real function of t such that χ′ = 1−µ for
t ∈ (0, µ), χ′ = −µ for t ∈ (µ, 1). The numbers cε,k represent the phase relation
between successive laminates. This assumption of a laminate structure has been
used in both in analytical [9] and numerical computations [10, 5, 1], and it
also constitutes the most popular method of construction approximate solutions
to the incremental variational problem and its time-continuous counterpart, cf.
[3, 2]. In [10] multiple-order laminates are used. We notice, however, that there
is no general reason why laminates (and, even more so, simple laminates) should
be sufficient to relax Wep, and also the fact that the first incremental problem
can be relaxed with simple laminates does not imply that the same holds for the
whole sequence. We shall now show that this is actually the case if additional
geometrical assumptions are satisfied.

As discussed above, we have equality in (4.2) if γ is locally monotone and
∇y ∈ M (d) everywhere. In turn, this holds if the following conditions on the
simplified problem are satisfied: (i) all lamination directions are the same; (ii)
γ(F±) are monotone in t, (iii) if γ(Fi) is not constant, then the volume fraction of
Fi is nondecreasing in t, where i ∈ {+,−}. Indeed, in such a case it is immediate
to construct a laminate such that pointwise γ is a monotone function.

Before going into the explicit construction of the laminate, we show that (4.3)
can replace the Dirichlet boundary condition y(x) = F (t)x on ∂Ω. Let ylam be
a laminate solution defined on Ω. As the discussion at the end of the proof of
Theorem 3.1 shows, for any δ > 0 there is a lamination period hδ, such that if ylam

has period less then hδ we can find yδ(x) which coincides with ylam up to a set of
measure δ, and which satisfies the Dirichlet boundary condition on ∂Ω. Further,
|Ik(y

lam) − Ik(y
δ)| is controlled by a constant times δ, since in the construction

only bounded gradients are used (the constant depends on the Lipschitz norm of
ylam). Therefore by choosing δ sufficiently small the energy corrections coming
from the boundary layer can be made arbitrarily small. Hence we can focus on
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the bulk contributions alone. Note that in this argument it is important that the
laminate can be made arbitrarily fine without affecting the bulk term Ik(y

lam).

We now focus on the case of a simple shear experiment, in which the applied
deformation is

ybdry(x, t) = F (t)x , F (t) =

(
1 t
0 1

)
.

Let the slip system be characterized by s = (s1, s2) and m = s⊥ = (−s2, s1),
where we can assume without loss of generality that s2 ≥ 0. We construct yk

based on the lamination obtained in the computation of the quasiconvex envelope
of Wep(F (tk), Id). First observe that F (t) ∈ N (2) for

0 ≤ t ≤ T = −2
s1

s2

,

hence we obtain solutions only if s1 ≤ 0. In the degenerate case s2 = 0 we get
F (t) ∈ M (2), and no microstructure is generated. For s2 > 0, the construction
above gives two solutions for b,

b1 =

(
0
1

)
and b2 =

1√
1 + (t/2)2

(
1

t/2

)
.

In the first case, the lamination direction does not depend on t. We explicitly
evaluate the result in this case. This gives a1 = Fb⊥1 = (−1, 0), and µ± are the
roots of

q(µ) − 1 = |Fµs|2 − 1 = s2
2µ

2 − 2µs2(s1 + s2t) + s2t(2s1 + s2t)

i.e.

µ+ = t µ− = t + 2
s1

s2

and correspondingly

γ(F+) = 0, γ(F−) = 2
s1

s2

Hence γ(F±) are constant, and the volume fraction of F−, |µ+|/(µ+ − µ−) =
s2t/2|s1|, is increasing in t. We conclude that this laminate satisfies the three
conditions mentioned above for equality in (4.2), and is therefore an approxi-
mate solution. The construction of the boundary layer can also be performed
straightforwardly: the laminates are uniformly Lipschitz, hence for each ε, there
is a δ (independent on k) such that the contribution of the boundary layer to
the energy is less than ε/2; in turn, this δ gives an hε which sets the scale of the
laminates needed for having an ε-approximate solution. As ε → 0, also δ and
hε → 0.

The total dissipation up to time T is∫
Ω

Wep(∇y(T, x), Id) = |Ω|W qc(F (T ), Id) = |Ω||T |.

These results demonstrate that we have indeed constructed a relaxed evolution
system that is solved by weak limits of approximate solutions of the original
single-slip system.
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The averaged, macroscopic evolution of the system can be completely described
by the quasiconvex envelope W qc. It is interesting to observe that the latter
has, in its domain, exactly the same form as the plastic dissipation in Tresca
plasticity, which is based on the assumption that any pair of orthonormal vectors
is a possible slip system and the resolved shear stresses are all equal. Indeed,
take a matrix F with unit determinant. Then, there is a unit vector a such that
|Fa| = 1. Hence we can write F = Q(Id + γa ⊗ a⊥), where Q is the rotation
that brings F to upper triangular form in the basis (a, a⊥). Then, the Tresca
dissipation corresponding to F is simply given by WTr(F ) = |γ|. But it is a simple
check (see beginning of the proof of Theorem 3.1) that WTr(F ) = (λ2 − λ1)(F ).
We conclude that the effective behavior of single-slip plasticity can, in some part
of the domain, be reproduced by isotropic Tresca plasticity. If three slip systems
are present, with a generic orientation, it can be shown that this result holds for
all F with unit determinant in an open neighborhood of the identity.

To show that the situation is not always so simple, we now consider a different
shear experiment,

ỹbdry(x, t) = F̃ (t) , F̃ (t) =

(
t 0
0 1/t

)
.

for 0 ≤ t ≤ T = s1/s2 (we assumed here that s1 > s2 > 0). Here the rank-one
connection is given by

b1,2 =
1√

1 + t2

(
1
±t

)
, a1,2 =

1√
1 + t2

(
t
±1

)
.

hence the lamination direction depends on t in all cases. An approximate solution
of a sequence of incremental problems cannot any more be found with the simple
scheme used above. Inequality (4.2) gives

K−1∑
k=0

Wep(∇yk+1,∇yk) ≥ Wep(∇yK, Id) ≥ W qc(F̃ (tK), Id) ,

and gives the lower bound W qc(F̃ (tK), Id) = tK − 1/tK on the total dissipation.

In closing, we remark that for the case of perfect single-slip plasticity the
fundamental obstacle that prevents the construction of more accurate approx-
imations of the evolution is given by the fact that W qc(F, F0) is only known
for F0 ∈ M (d), whereas for time steps after the first one F0 ∈ N (d). The ap-
proach above corresponds to replacing F0 with a gradient Young measure, which
is then assumed to be a laminate. This permits a straightforward solution in the
simple-shear case, but is not applicable to more general problems.

Acknowledgments. We thank S. Müller and V. Šverák for providing us with
their notes on the proof of Theorem A.1, on which the first part of the Appendix
is based. This work was partially supported by the DFG Schwerpunktprogramm
1095 Analysis, Modeling and Simulation of Multiscale Problems.
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Appendix A. Proof of Theorem 3.5

Theorem 3.5 can be proven by a explicit construction. The basic construction
step, given here in Lemma A.2, is a slight variant of the one used by Müller and
Šverák to obtain Theorem A.1. This result was, however, stated without proof in
[8]. The main point in our construction is that our maps form perfect laminates
in sets with small compact complement and have gradients in a set K ∩ GL(2)
where K ⊂ R2×2 is convex.

Theorem A.1 ([8], Theorem 6.1 and Remark 2 thereafter). Let A, B ∈ R2×2,
with det A = det B = 1 and rank(A − B) = 1, and Ω be an open set in R2. For
any λ ∈ (0, 1), and any δ > 0, there is a piecewise linear map u : Ω → R2 such
that det∇u = 1, dist(∇u, {A, B}) ≤ δ a.e., and u = (λA + (1 − λ)B)x on ∂Ω.

Proof. A suitable change of variables, which is discussed in more detail at the
beginning of the proof of Theorem 3.5 below, shows that it is sufficient to prove
the statement for the matrices of the form given in Eq. (A.1), whose (weighted)
average is the identity. Lemma A.2 with ε = δ gives then a proof of Theorem
A.1 for a special domain ω. The open set Ω can be covered by countably many
disjoint scaled copies of ω, plus a null set. Since the construction can be scaled
down to each scaled copy of ω, Theorem A.1 follows. �

We now give the basic construction, with the additional quantitative estimates
needed for the proof of Theorem 3.5.

Lemma A.2. For any ε > 0, λ ∈ (0, 1) and t > 0, such that t1/2ε is small
enough, there is ξ > 0 such that for all Ω = [−L, L] × [−H, H ] with H < L/ξ
one can construct a finitely piecewise affine u : Ω → R2 such that det∇u = 1
a.e., u(x) = x on the boundary, u coincides with a laminate with period H (as
in (A.2)) between the matrices

A =

(
1 (1 − λ)t
0 1

)
and B =

(
1 −λt
0 1

)
(A.1)

on [−L + Hξ, L − Hξ] × [−H, H ], and dist(∇u, [A, B]) ≤ ct1/2ε(1 + t). The
parameter ξ can be chosen as 1/ε.

Further, on the open subset where ∇u �= Id (i.e. ω = Ω ∩ {|x| + |y|ξ ≤ L}),
the stronger bound dist(∇u, {A, B}) ≤ ct1/2ε(1 + t) holds.

By finitely piecewise affine we mean that the domain can be decomposed in
finitely many pieces such that the function is affine on each of them. In the
following proofs we just call them piecewise affine for simplicity.

Proof. Consider the simple laminate on the set [−L, L] × [−H, H ] defined by
uL(0, 0) = (0, 0) and

∇uL(x, y) =

{
A for |y| < Hλ

B for Hλ < |y| < H
(A.2)
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Figure A.1. The two laminates whose composition is used in the
construction of Lemma A.2. Dotted curves: reference configura-
tion. Full curves: deformed configuration. (a): uL, defined in
(A.2), is a horizontal shear, which satisfies the top and bottom
boundary conditions, its gradient takes values A and B. (b): v,
defined in (A.3), is a vertical shear, which is the identity in the
central part, and satisfies the left and right boundary conditions.
Its gradient takes values Id, C and D which are all close to the
identity.

(see Fig. A.1a), which satisfies the boundary condition on the top and bottom
sides, but not on the left and right ones. The construction is based on a modi-
fication of uL in the region L − ξH < |x| < L in order to enforce the boundary
conditions on the latter two sides. This is done by first composing uL with
another piecewise affine function, and then modifying further a boundary layer.

More precisely, let l = Hξ, and consider the function defined by v(0, 0) = (0, 0)
and

∇v(x, y) =

⎧⎪⎨⎪⎩
Id for |x| < L − l

C for L − l < |x| < L − (1 − µ)l

D for L − (1 − µ)l < |x| < L

(A.3)

(see Fig. A.1b) where C = Id−q(1−µ)e2⊗e1, and D = Id+qµe2⊗e1. The small
parameters q and µ will be chosen later. Note that ∇v has unit determinant, is
everywhere close to the identity, and that v is the identical map for |x| < L − l
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Figure A.2. Construction used in proving Lemma A.2. (a): the
composition of uL with v generates a piecewise affine function,
which on the considered domain takes six different gradients. (b):
the four triangles on which the function is replaced by the affine
interpolation.

and for x = ±L. Consider now the composition uL ◦ v. This is a piecewise affine
map, whose gradient has unit determinant and is close to A or B everywhere.
Quantitatively, we get

|AC − A| = |A||C − Id| ≤ (2 + t)q (A.4)

and the same estimate for the other products.

The pieces on which uL ◦ v is affine are shown in Figure A.2a. Consider the
four triangles shown in Fig. A.2b, where for definiteness we focus on the one
in the first quadrant, XY Z. We now set u = uL ◦ v in the central region,
and equal to the affine interpolation between the values of uL ◦ v at the three
corners in each of the four triangles (XY Z and the analogous ones in the other
quadrants). Since in X and Y both uL and v are the identical map, this function
satisfies the boundary condition u(x, y) = (x, y) on the boundary of the domain
ω = XY X ′X ′′Y ′X ′′′. It can therefore be extended to the full domain by using
the identical map in the remaining triangles (XY T and its copies in the other
quadrants). This results in a continuous, piecewise affine map. It only remains
to check that the two new gradients used in the four boundary triangles have
unit determinant and are close to B. Consider XY Z, for definiteness. The map
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is the identity on the side XY . The determinant of the affine interpolation is
unity if the area is conserved, namely, if the vertex Z moves parallel to XY .
This corresponds to the condition that u(Z) − Z = (tλ(1 − λ)H,−qµ(1 − µ)l)
is parallel to (l,−H), namely, that ql2µ(1 − µ) = tλ(1 − λ)H2. This permits
to determine q as a function of µ and ξ = l/H. If this relation is satisfied, the
gradient in the triangle is an area-preserving shear along XY . More precisely,
we get u(Z) − Z = λ(1 − λ)Ht(1,−ξ−1), and

∇u|XY Z = Id − tλp(1,−ξ−1) ⊗ (ξ−1, 1)

for some p. For large ξ, we see that p approaches unity and this gradient ap-
proaches B. To determine quantitatively the distance from B we compute p from
the relation

u(Z) − Z = (∇u|XY Z − Id) (Z − X)

which follows from u(X) = X and the fact that u is affine in this triangle. A
straightforward computation leads to

1

p
= 1 − µ

1 − λ
− λt

ξ
. (A.5)

We remark that the fact that the right-hand side of this relation is positive shows
that Z lies below the line XY , as was drawn in Figure A.2b. Then, notice that∣∣∣ ∇u|XY Z − B

∣∣∣ ≤ t|p − 1| + 2
tp

ξ
(A.6)

Combining (A.4), (A.5) and (A.6), we get

dist(∇u, {A, B}) ≤ c
µ

1 − λ
+ c

t

ξ
+ (2 + t)q

Finally, choose µ = λ(1−λ)t1/2ε and ξ ≥ 1/ε. We then get q < 2t1/2/ξ2ε ≤ 2t1/2ε,
and we can check that all conditions are satisfied.

In summary, we have obtained a construction on ω which is composed by 15
affine pieces, uses 7 different gradients, all with unit determinant and close either
to A or to B, matches continuously with the identity on the boundary, and is a
laminate in the central part of the domain. By taking L = l we can eliminate
the central region, and reduce to 12 affine pieces and 5 gradients. �

Proof of Theorem 3.5. We first reduce to a canonical form by a change of vari-
ables. Let F = λA + (1 − λ)B. We set ũ(x) = Qu(F−1QT x), where ũ : Ω̃ =
FQΩ → R2, and Q ∈ SO(2) is such that Ã = QAF−1QT is an upper triangular
matrix as in (A.1). The latter exists since AF−1 is a rank-one perturbation of

the identity. By the rank-one condition, the same holds for B̃ = QBF−1QT .
The vector v is in turn replaced by ṽ = QFv. The boundary condition becomes
ũ(x) = x on ∂Ω̃.

From now on we assume that A = Id+ t(1−λ)ex ⊗ey, and B = Id− tλex ⊗ey.
We can further assume t > 0, since t = 0 is trivial, and if t < 0 we can swap A
and B. We cannot, however, set t = 1, since that would require a non-isometric
change of variables also in the target, which would change the norm in |∇uv|.
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Figure A.3. Construction used in the proof of Theorem 3.5. The
two oblique rectangles are R1 and R2, outside which u1 is the
identity map. In the part toward the interior of the square Ω,
∇u1 = A1. The dashed parts are where the u1 differs from a
laminate. The thin rectangle in the center is S, which is one of the
blocks used in the construction of u2. The construction differs from
a laminate only in the two dashed end parts, which are contained
in the region where ∇u1 = A1. The dashed rectangle is Ωδ, where
the final construction is a laminate between A and B.

The vector v is uniquely determined by A and B, up to a factor. Indeed, let
v = (vx, vy). Then, |Av|2 = |Bv|2 gives 2t(1−λ)vxvy +t2(1−λ)2v2

y = −2tλvxvy +

t2λ2v2
y. This has two solutions, which up to a scaling are v1 = (t(λ − 1

2
), 1) and

v2 = (1, 0). The assumption Av �= Bv eliminates the second one, hence from
now on we can assume v = (t(λ − 1

2
), 1).

It is sufficient to prove the statement for the reference square (−1, 1)2. Indeed,
by Vitali’s theorem we can find N and k such that Ω can be covered by N disjoint
copies of (−2−k, 2−k)2, plus a remainder Ω′ with measure less than δ/2. The
construction for Ω is then done using the result ũ for the reference square, with
δ̃ = min(δ, 22k−1δ/N), scaled and translated onto each of the N small squares,
and u(x) = x in Ω′.

For the case Ω = (−1, 1)2 we construct u explicitly, as the composition of two
deformations. The first deformation is a laminate between A and B on a large
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part of the domain (containing Ωδ), satisfies the determinant constraint, and
has dist(∇u, [A, B]) small. In the central part |(∇u)v| = |Av|, in the boundary
layer the the inequality |(∇u)v| ≤ |Av| is violated by a small amount (controlled
by dist(∇u, [A, B])). The second deformation is the identity in the central part
(covering Ωδ), and corrects the inequality in the region around the boundary.

We start with the latter, which will be a single step of a laminate in each of two
rectangles, close to the left and right boundaries of the domain Ω, as illustrated
in Figure A.3. For small θ and q, consider the matrices α = Id + qn ⊗ n⊥ and
β = Id − qn ⊗ n⊥, where n = (− sin θ, cos θ). We shall choose them so that

|Aβv| < |Av| and |Bβv| < |Bv| . (A.7)

To show that this is possible, consider for C ∈ {A, B} the expansion

|Cβv|2 − |Cv|2 = −2q(n · CT Cv)(n⊥ · v) + O(q2) .

We first choose θ < δ/20 such that n⊥ · v �= 0 and n · AT Av, n · BT Bv > 1/2.

This is possible since for θ = 0 they are 1 + t2

2
(1 − λ) and 1 + t2

2
λ and therefore

bigger than 1. Then it is clear that for q small enough we find η > 0 such that

|Cβv| ≤ |Av| − η (A.8)

for all C ∈ [A, B], by convexity. The function u1 will be constructed by Lemma
A.2 using the pair (α, β) (after suitable rotation, the precise domain is specified
below) with λ1 = 1/2 and ε1 = 1. For q < 1, the resulting ξ1 can be taken to be
a global constant. For q small enough, we have |∇u1v| ≤ |Av|, since Lemma A.2
gives

|∇u1v| ≤ (1 + |∇u1 − Id|) |v| ≤ (1 + cq1/2)|v| ,
and |v| = |λAv + (1 − λ)Bv| < |Av| by hypothesis (this is where we need that
Av �= Bv).

We now define the domains where this construction is used, which have to
be rectangles with sides parallel to n and n⊥. Let R1 be such a rectangle, with
height (along n⊥) δ/2, inscribed into [1 − δ, 1] × [−1, 1]. R2 is the same on the
other side (see Figure A.3). Since the other dimension of the rectangles is larger
than 1, the hypothesis of Lemma A.2 are satisfied for δ < ξ1 (recall that ξ1 was
fixed). We define u1 by application of Lemma A.2 to R1 and R2, and extend it by
u1(x) = x outside. At this point, u1 satisfies the following: (i) |(∇u1)v| ≤ |Av|,
det∇u1 = 1, |∇u1 − Id| ≤ cq1/2 everywhere; (ii) ∇u1 = Id for |x| ≤ 1 − δ, (iii)
∇u1 = β in the region at distance less than δ/8 from the left side of R1, and
|y| < 1 − δξ1.

To construct the other function, which is a laminate between A and B in the
central part of Ω, consider for h > 0 small and |y0| ≤ 1 − δξ1 − h a strip of
the form Sy0 = [x0, x1] × [y0 − h, y0 + h]. It is clear that we can choose x0 in
[−1,−1 + δ] and x1 in [1 − δ, 1] such that ∇u1 takes only the values Id and β
on Sy0 , and that on the two regions S1

y0
= [x0, x0 + δ/16] × [y0 − h, y0 + h] and

S2
y0

= [x1 − δ/16, x1] × [y0 − h, y0 + h] it takes value β. We now want to apply
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Lemma A.2 to the matrices A and B in Sy0 , so that the result is affine outside
of S1

y0
and S2

y0
, and ε small enough that c(1 + t)t1/2ε ≤ δ,

|Aβv| + c(1 + t)t1/2ε|βv| ≤ |Av| , (A.9)

and the same with A replaced by B. The latter is possible by (A.7). Let ε2 be
the largest ε that satisfies these conditions. Then, the corresponding ξ2 (as in
the statement of Lemma A.2) gives the bound h0 on the lamination period.

For h < h0, we cover (−1 + δ, 1 − δ) × (−1 + δξ1, 1 + δξ1) with stripes of the
form Sy0+nh, and construct u2 in each of them by application of Lemma A.2 to
the matrices A and B, with ε = ε2. Outside the stripes, we define u2(x) = x.

The final function will be u = u2 ◦ u1. Now, the gradient

∇u = (∇u2 ◦ u1)∇u1

automatically satisfies the determinant constraint, and the closeness to [A, B]
since ∇u2 is close to it and ∇u1 is close to Id. Now we check the inequality. In
the outer part of the domain, ∇u2 = Id and we had seen that |(∇u1)v| ≤ |Av|. In
the intermediate part, ∇u2 is close to [A, B] and ∇u1 = β, and we get the desired
inequality by (A.9). In the inner part, finally, ∇u2 takes values A and B, and
∇u1 = Id, hence equality holds. This concludes the proof of the theorem. �

Remark A.3. The same result, with the minor changes in the proof, holds also
with the condition |(∇u)v| ≤ |Av| replaced by f(∇u) ≤ 0, for any smooth f
which obeys (i) f(A) = f(B) = 0; (ii) f(λA + (1 − λ)B) < 0 for 0 < λ < 1; and
(iii) there is θ �= π/2 such that df(A(Id+tn⊗n⊥))/dt and df(B(Id+tn⊗n⊥))/dt
evaluated in 0 are both nonzero and have the same sign.
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