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Abstract

The generalization to gradient vector fields of the classical double-well, singularly perturbed func-
tionals,

Iε (u; Ω) :=

Z
Ω

1

ε
W (∇u) + ε|∇2u|2 dx,

where W (ξ) = 0 if and only if ξ = A or ξ = B, and A − B is a rank-one matrix, is considered. Under
suitable constitutive and growth hypotheses on W it is shown that Iε Γ-converge to

I (u; Ω) =

j
K∗HN−1(S (∇u) ∩ Ω) if u ∈ W 1,1(Ω; Rd), ∇u ∈ BV (Ω; {A, B}),
+∞ otherwise,

where K∗ is the (constant) interfacial energy per unit area.
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1 Introduction

The theories of phase transitions and minimal surfaces have led to extensive study of singularly-perturbed,
nonconvex functionals of the form

Jε (v; Ω) :=
∫

Ω

1
ε
W (v) + ε|∇v|2 dx, (1.1)

where W is a nonnegative potential with multiple minima. This functional was first studied by Modica and
Mortola [31], and subsequently it was applied by Modica [30] to the van der Waals–Cahn-Hilliard theory of
fluid-fluid phase transitions to solve an “optimal design” problem proposed by Gurtin [25]:

Minimize
∫

Ω

W (u) dx, subject to a density constraint
1
|Ω|
∫

Ω

u dx = θa+ (1 − θ)b,

for some θ ∈ (0, 1), and where W is a nonnegative bulk energy density with {W = 0} = {a, b}, a, b ∈ R,
a < b. The striking nonuniqueness of solutions (minimizers) is due to the fact that nucleation of phases may
occur without an increase in energy. In order to select physically preferred solutions, the van der Waals–
Cahn-Hilliard theory adds a gradient term which upon rescaling leads to (1.1). Using De Giorgi’s notion of
Γ-convergence ([19]; see also [18, 15, 1]), it was shown in [31, 30], that

Γ − lim
ε→0+

Jε (u0; Ω) =
{
K0PerΩ(E) if u = χEa+ (1 − χE)b, |E| = θ |Ω| , u ∈ BV (Ω; {a, b}) ,
+∞ otherwise, (1.2)

where K0 :=
∫ b
a

√
W (s)ds. We conclude, therefore, that in the limit as ε → 0 partitions with minimal

interfacial area and given volume fraction θ are selected.
Generalizations of (1.1)-(1.2) were obtained by Bouchitté [14] and by Owen and Sternberg [34] for the

undecoupled problem, in which the integrand in Jε has the form ε−1f(x, v(x), ε∇v(x)). We refer also to the
work of Kohn and Sternberg [28] where the study of local minimizers for (1.1) was undertaken.

The vector-valued setting, where u : Ω → Rd, Ω ⊂ RN , d,N > 1, was considered in [23, 10], where K0 is
replaced by

K1 := inf

{∫ L

−L
W (g (s)) + |g′ (s)|2 ds : L > 0, g piecewise C1, g(−L) = a, g(L) = b

}
. (1.3)

The case where W has more than two wells was addressed by Baldo [7] (see also Sternberg [35]), and later
generalized by Ambrosio [2].

The corresponding problem for gradient vector fields, where in place of Jε we introduce

Iε (u; Ω) :=

⎧⎨
⎩
∫

Ω

1
ε
W (∇u) + ε|∇2u|2 dx if u ∈W 2,2

(
Ω; Rd

)
,

+∞ otherwise,
(1.4)

arises naturally in the study of elastic solid-to-solid phase transitions [9, 17, 27, 32], and it has defied a
considerable mathematical effort during the past decade. Here u : Ω → Rd stands for the deformation, and

2



taking into account frame-indifference we assume that {W = 0} = SO(N)A ∪ SO(N)B, where SO(N) is
the set of rotations in RN . In order to guarantee the existence of “classical” (as opposed to measure-valued)
non affine solutions for the limiting problem, and in view of Hadamard’s compatibility condition for layered
deformations (see also Ball and James [9]), the two wells must be rank-one connected. Without loss of
generality, we then assume that A− B = a⊗ ν for some a ∈ RN and ν ∈ SN−1 := ∂B(0, 1) ⊂ RN . We are
now able to construct gradients taking values only on {A,B} and layered perpendicularly to ν.

As a first simplification of the problem, we remove the frame-indifference constraint and we assume simply
that

{W = 0} = {A,B} , A−B = a⊗ ν.

Here interfaces of minimizers must be planar with normal ν (see [9]), therefore at first glance the analysis may
seem to be greatly simplified as compared with the initial problem (1.1) which requires handling minimal
surfaces. However, it turns out that the PDE constraint curl = 0 imposed on the admissible fields presents
numerous difficulties to the characterization of the Γ-limsup. Precisely, if, say, ∇u has a layered structure
with two interfaces then it is possible to construct a “realizing” (effective) sequence nearby each interface,
but the task of gluing together the two sequences on a suitable low-energy intermediate layer is very delicate.
This is where specific constitutive hypotheses placed on W will come into play (see Sections 5 and 6 below).

An intermediate case between (1.1) and (1.4), where the nonconvex potential depends on u and the
singular perturbation on ∇2u, has been recently studied by Fonseca and Mantegazza [22] (for other gener-
alizations see [21]). Also, in the two-dimensional case and when W vanishes on the unit circle (1.4) reduces
to the so-called Eikonal functional which arises in the study of liquid crystals [5] as well as in blistering of
delaminated thin films [33]. Recently, the Eikonal problem has received considerable mathematical attention,
but in spite of substantial partial progress (see [3, 6, 26, 20]) its Γ-limit remains to be identified.

In this work, and under the standing hypothesis

(H1) W is continuous, W (ξ) = 0 if and only if ξ ∈ {A,B} , where A−B = a⊗ ν for some a ∈ Rd\ {0} and
ν ∈ SN−1;

and additional assumptions on W , we show that as ε→ 0+ the functionals Iε Γ-converge to

I (u; Ω) =
{
K∗HN−1(S (∇u) ∩ Ω) if u ∈ W 1,1(Ω; Rd),∇u ∈ BV (Ω; {A,B}),
+∞ otherwise,

where S (∇u) is the singular set of ∇u, i.e. the collection of interfaces,

K∗ := Γ − lim inf
ε→0+

Iε (u0;Qν)

= inf
{
lim inf
n→∞ Iεn(un;Qν) : εn → 0+, un ∈ W 2,2

(
Qν ; Rd

)
, un → u0 in L1

(
Q; Rd

)}
,

where Qν is a unit cube in RN centered at the origin and with two of its faces orthogonal to ν, and

∇u0 :=
{
A if x · ν > 0,
B if x · ν < 0.

The main results of this paper are:

Theorem 1.1 (Compactness) Assume that the double well potential W satisfies conditions (H1) and

(H2) there exists C > 0 such that

W (ξ) ≥ C |ξ| − 1
C

for all ξ ∈ Rd×N .

Let εn → 0+. If {un} ⊂W 2,2
(
Ω; Rd

)
is such that

sup
n
Iεn (un; Ω) <∞,

then there exist a subsequence {unk
} and u ∈W 1,1

(
Ω; Rd

)
, with ∇u ∈ BV (Ω; {A,B}) , such that

unk
− 1

|Ω|
∫

Ω

unk
dx→ u in W 1,1

(
Ω; Rd

)
.
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Theorem 1.2 (Γ-liminf) Assume that W satisfies condition (H1) . Let u ∈ W 1,1
(
Ω; Rd

)
, with ∇u ∈

BV (Ω; {A,B}) . Then
Γ − lim inf

ε→0+
Iε (u; Ω) ≥ K∗ PerΩ(E),

where ∇u (x) = (1 − χE (x))A+ χE (x) B for LN a.e. x ∈ Ω.

In order to characterize the Γ-limsup, we will consider two sets of additional constitutive hypotheses on
W . Without loss of generality we may assume that

A = −B = a⊗ eN .

First consider

(H2)′ W (ξ) → ∞ as |ξ| → ∞;

(H3) W (ξ) ≥W (0, ξN ) where ξ = (ξ′, ξN ) ∈ Rd×(N−1) × Rd.

Note that (H3) is satisfied by the prototype bulk energy density

W (ξ) := min
{
|ξ −A|2 , |ξ −B|2

}
.

Theorem 1.3 (Γ-lim) Let Ω ⊂ RN be an open, bounded, simply connected domain with Lipschitz boundary.
Assume that W satisfies the conditions (H1) , (H2)′ and (H3) . Suppose, in addition, that W is differentiable
at A and B. Let u ∈W 1,1

(
Ω; Rd

)
, with ∇u ∈ BV (Ω; {A,B}) . Then

Γ − lim
ε→0+

Iε (u; Ω) = K∗ PerΩ(E),

where ∇u = (1 − χE (x))A+ χE (x) B for LN a.e. x ∈ Ω.

The hypothesis (H3) entails a one dimensional character to the asymptotic problem. Indeed in this case
the characterization of the constant K∗ can be greatly simplified. It can be shown (see Proposition 5.3) that
K∗ reduces to the analog of the constant K1 introduced in (1.3), precisely, K∗ = K where

K := inf

{∫ L

−L
W (0, g (s)) + |g′ (s)|2 ds : L > 0, g piecewise C1, g(−L) = −a, g(L) = a

}
.

Theorem 1.3 is related to work of Kohn and Müller [27] who studied the minimization of the functional∫
(0,L)×(0,1)

(
∂u

∂x1

)2

+ ε

∣∣∣∣∂2u

∂x2
2

∣∣∣∣ dx1dx2

subject to the constraint
∣∣∣ ∂u∂x2

∣∣∣ = 1 and boundary conditions.
The main effort of the present paper is devoted to the construction of a realizing or effective sequence

for the Γ−limsup. It turns out that this construction is strongly hinged to the geometry of the domain. We
first assume that (see Figure 1)

for each t ∈ R the horizontal section Ωt := {(x′, xN ) ∈ Ω : xN = t} is connected in RN , (1.5)

and that
t 
→ HN−1 (Ωt) is continuous in (α, β) , (1.6)

where
α := inf {xN : x ∈ Ω} , β := sup {xN : x ∈ Ω} .

It is easy to see that convex domains or cylinders of the form ω× (a, b) , where ω ⊂ RN−1, satisfy conditions
(1.5) and (1.6). This case is particularly simple since realizing sequences are one-dimensional, and the
assumption that W is differentiable at A and B is not used (see Theorem 5.5).

4



Figure 1: Example of a domain where (1.5) and (1.6) hold.

Figure 2: Example of a domain where (1.5) holds but (1.6) fails.

If we now remove the assumption (1.6) (see Figure 2), then one-dimensional sequences cease to be optimal
as they would yield K∗ PerΩ(E) rather than K∗ PerΩ(E) as desired. In this case, realizing sequences are
one-dimensional except near horizontally flat parts of ∂Ω where HN−1

(
∂Ω ∩ {(x′, xN ) ∈ RN : xN = t

})
> 0

(see Theorem 5.6).
The situation becomes considerably more complicated when one drops condition (1.5) (see Figure 3) since

the gradient may change abruptly when two connected components of Ωt meet. To solve this problem we
glue realizing sequences near the boundary to appropriate “mollifications” of u.

We remark that the above mentioned difficulties cannot be resolved by performing rotations and trans-
lations of Ω nearby the identity because the perimeter of the interface may change discontinuously under
these transformations (see Figure 4).

As we already mentioned, the hypothesis (H3) is quite strong as it entails a one dimensional character
to the asymptotic problem. In the second part of the paper we replace it with the isotropy assumption:

(H5) W is even in each variable ξi, i = 1, · · · , N−1, that isW (ξ1, · · · ,−ξi, · · · , ξN ) = W (ξ1, · · · , ξi, · · · , ξN )
for each i = 1, · · · , N − 1,

where
ξ = (ξ1, · · · , ξN ) ∈ Rd × · · · × Rd︸ ︷︷ ︸

N times

, ξ′ = (ξ1, · · · , ξN − 1) ∈ Rd × · · · × Rd︸ ︷︷ ︸
N−1 times

,

so that ξ = (ξ′, ξN ) ∈ Rd×(N−1) × Rd.
In this case we can prove the following result
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Figure 3: Example of a domain where (1.5) does not hold.

Figure 4: Example of a domain where translations of rotations of Ω cause discontinuous changes in the
perimeter of the interface.

Theorem 1.4 Let Ω ⊂ RN be an open, bounded, simply connected domain with Lipschitz boundary. Assume
that W satisfies the conditions (H1) , (H5) , and that there exist an exponent p ≥ 2, constants c, C, ρ > 0 and
a convex function g : [0,∞) → [0,∞), with g (s) = 0 if and only if s = 0, such that g is derivable in s = 0,
g (2t) ≤ cg (t) for all 0 ≤ t ≤ ρ,

g (|ξ −A|) ≤W (ξ) ≤ cg (|ξ − A|) if |ξ −A| ≤ ρ,

g (|ξ −B|) ≤W (ξ) ≤ cg (|ξ − B|) if |ξ −B| ≤ ρ,

and
1
C

|ξ|p − C ≤W (ξ) ≤ C (|ξ|p + 1)

for all ξ ∈ Rd×N . Let u ∈W 1,1
(
Ω; Rd

)
, with ∇u ∈ BV (Ω; {A,B}) . Then

Γ − lim
ε→0+

Iε (u; Ω) = K∗ PerΩ(E),

where ∇u(x) = (1 − χE (x))A+ χE (x) B for LN a.e. x ∈ Ω. Moreover K∗ = Kper, where

Kper := inf
{∫

Q

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx : L > 0, v ∈W 2,∞ (Q; Rd

)
,

∇v = ±a⊗ eN nearby xN = ±1
2
, v periodic of period one in x′

}
.

It would be interesting to know if Theorem 1.4 continues to hold without assuming the isotropy assump-
tion (H5) . We have not been able to prove this.

In the final section of this paper we exhibit an example that shows that without hypothesis (H3), in
general, we may have

Kper < K.

Note that this is in sharp contrast with the first-order gradient theory of phase transitions modeled by (1.1),
where the asymptotic problem has always a one dimensional character.
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2 Preliminaries

We start with some notation. Here Ω ⊂ RN is an open, bounded Lipschitz domain, LN and HN−1 are,
respectively, the N dimensional Lebesgue measure and the N −1 dimensional Hausdorff measure in RN . We
shall label the first N−1 coordinates of a point x ∈ RN by x′, and the N -th one by xN , so that x = (x′, xN ).
We define A (Ω) as the class of all open subsets of Ω and SN−1 :=

{
x∈RN : |x| = 1

}
. We let Q :=

(− 1
2 ,

1
2

)N
be the unit cube centered at the origin, and we set Q(x0, ε) := x0 + εQ. In the sequel C and c will stand
for generic real positive constants which may vary from line to line and expression to expression within the
same formula.

For ε > 0 consider the functional

Iε : L1
(
Ω; Rd

)×A (Ω) → [0,+∞]

defined by

Iε (u;U) :=

⎧⎨
⎩
∫
U

1
ε
W (∇u) + ε|∇2u|2 dx if u ∈W 2,2

(
Ω; Rd

)
,

+∞ otherwise,

where the double well potential W : Rd×N → [0,∞) satisfies the following standing hypotheses:

(H1) W is continuous, W (ξ) = 0 if and only if ξ ∈ {A,B} , where A−B = a⊗ ν, for some a ∈ Rd\ {0} and
ν ∈ SN−1;

(H2) there exists C > 0 such that

W (ξ) ≥ C |ξ| − 1
C

for all ξ ∈ Rd×N .

For simplicity of notation, we shall assume that

A = −B = a⊗ eN . (2.1)

The general case may be reduced to this situation by considering in place of W a new bulk energy density

Ŵ (ξ) := W ((ξ + ξ0)RT )

for suitable ξ0 ∈ Rd×N and a rotation R with ReN = ν. We recall that Ball and James [9] have shown that
there exists a non-affine Lipschitz function u such that its gradient takes only the matrix values A and B if
and only if A and B are rank-one connected, i.e. rank (A−B) = 1, in which case the jump sets (or interfaces)
of ∇u are planar and orthogonal to the direction eN . Under (2.1) the prototype blown-up macroscopic field
with one interface in the unit cell Q = (−1/2, 1/2)N is

u (x) := |xN | a. (2.2)

We review briefly some facts about functions of bounded variation which will be useful in the sequel. A
function u ∈ L1(Ω; Rd) is said to be of bounded variation if for all i = 1, · · ·d, and j = 1, · · ·N , there exists
a Radon measure µij such that ∫

Ω

ui(x)
∂v

∂xj
(x) dx = −

∫
Ω

v(x) dµij

for every v ∈ C1
0 (Ω; R). The distributional derivative Du is the matrix–valued measure with components

µij . Given u ∈ BV (Ω; Rd) the approximate upper and lower limit of each component ui, i = 1, · · · d, are
given by

u+
i (x) := inf

{
t ∈ R : lim

ε→0+

1
εN

LN ({y ∈ Ω ∩Q(x, ε) : ui(y) > t}) = 0
}
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and

u−i (x) := sup
{
t ∈ R : lim

ε→0+

1
εN

LN ({y ∈ Ω ∩Q(x, ε) : ui(y) < t}) = 0
}
,

while the jump set of u, or singular set, is defined by

S(u) :=
d⋃
i=1

{x ∈ Ω : u−i (x) < u+
i (x)}.

It is well known that S(u) is N − 1 rectifiable, i.e.

S(u) =
∞⋃
n=1

Kn ∪ E,

where HN−1(E) = 0 and Kn is a compact subset of a C1 hypersurface. If x ∈ Ω\S(u) then u(x) is taken
to be the common value of (u+

1 (x), · · · , u+
d (x)) and (u−1 (x), · · · , u−d (x)). It can be shown that u(x) ∈ Rd

for HN−1 a.e. x ∈ Ω\S(u). Furthermore, for HN−1 a.e. x ∈ S(u) there exist a unit vector νu(x) ∈ SN−1,
normal to S(u) at x, and two vectors u−(x), u+(x) ∈ Rd (the traces of u on S(u) at the point x) such that

lim
ε→0

1
εN

∫
{y∈Q(x0,ε): (y−x)·νu(x)>0}

|u(y) − u+(x)|N/(N−1)dy = 0

and
lim
ε→0

1
εN

∫
{y∈Q(x0,ε): (y−x)·νu(x)<0}

|u(y) − u−(x)|N/(N−1)dy = 0.

Note that, in general, (ui)+ �= (u+)i and (ui)− �= (u−)i. We denote the jump of u across S(u) by [u] :=
u+ − u−. The distributional derivative Du may be decomposed as

Du = ∇uLN + (u+ − u−) ⊗ νuHN−1S(u) + C(u),

where ∇u is the density of the absolutely continuous part of Du with respect to the N–dimensional Lebesgue
measure LN and C(u) is the Cantor part of Du. These three measures are mutually singular.

A set E ⊂ Ω is of finite perimeter if χE ∈ BV (Ω; R) and we denote by PerΩ(E) the perimeter of E in Ω.
Let εn → 0+. We say that a functional

I : L1
(
Ω; Rd

)×A(Ω) → [0,+∞]

is the Γ−lim inf (resp. Γ−lim sup) of the sequence of functionals {Iεn} with respect to the strong convergence
in L1

(
Ω; Rd

)
if for every u ∈ L1

(
Ω; Rd

)
I(u; Ω) = inf

{
lim inf
n→∞ (resp. lim sup

n→∞
) Iεn(un; Ω) : un ∈ L1

(
Ω; Rd

)
, un → u in L1

(
Ω; Rd

)}
,

and we write

I = Γ − lim inf
n→∞ Iεn

(
resp. I = Γ − lim sup

n→∞
Iεn

)
.

Since Iε (v;U) = ∞ if v /∈W 2,2
(
Ω; Rd

)
, it is clear that we may write

I(u; Ω) = inf
{

lim inf
n→∞ (resp. lim sup

n→∞
) Iεn(un; Ω) : un ∈W 2,2

(
Ω; Rd

)
, un → u in L1

(
Ω; Rd

)}
.

We say that the sequence {Iεn} Γ-converges to I if the Γ − lim inf and Γ − lim sup coincide, and we write

I = Γ − lim
n→∞ Iεn .
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The functional I is said to be the Γ− lim inf (resp. Γ− lim sup) of the family of functionals {Iε} with respect
to the strong convergence in L1

(
Ω; Rd

)
if for every sequence εn → 0+ we have that

I = Γ − lim inf
n→∞ Iεn

(
resp. I = Γ − lim sup

n→∞
Iεn

)
,

and we write

I = Γ − lim inf
ε→0

Iε

(
resp. I = Γ − lim sup

ε→0
Iε

)
.

Finally, we say that I is the Γ-limit of the family of functionals {Iε}, and we write

I = Γ − lim
ε→0

Iε,

if Γ − lim inf and Γ − lim sup coincide.

3 Compactness

The following compactness result is a direct consequence of the one obtained in [23] for the functional
(1.1), and the structure of the limit has been characterized in [9]. For completeness we give here a short
self-contained proof.

Theorem 3.1 (Compactness) Assume that the double well potential W satisfies conditions (H1) and
(H2) . Let εn → 0+. If {un} ⊂W 2,2

(
Ω; Rd

)
is such that

sup
n
Iεn (un; Ω) <∞,

then there exist a subsequence {unk
} and u ∈W 1,1

(
Ω; Rd

)
, with ∇u ∈ BV (Ω; {A,B}) , such that

unk
− 1

|Ω|
∫

Ω

unk
dx→ u in W 1,1

(
Ω; Rd

)
.

Proof. We claim that the sequence
{
un − 1

|Ω|
∫
Ω
un dx

}
is weakly compact in W 1,1

(
Ω; Rd

)
. Indeed, by

(H2) , and with c > 0 such that
sup
n
Iεn (un; Ω) =: c <∞, (3.1)

we have
εnc ≥

∫
Ω

W (∇un) dx ≥ C

∫
Ω

|∇un| dx− 1
C

|Ω| ,

and so {∇un} is uniformly bounded in L1
(
Ω; Rd×N

)
. By Poincaré-Friedrichs’ inequality we conclude that

the sequence
{
un − 1

|Ω|
∫
Ω un dx

}
is uniformly bounded in W 1,1

(
Ω; Rd

)
. Thus, to prove the claim it remains

to show that the sequence {∇un} is equi-integrable. Fix ε > 0. By (H2) we have

W (ξ) ≥ 1
2
C |ξ|

for all ξ ∈ Rd×N with |ξ| ≥ L := 2
C2 , and by (3.1) we have

0 ≤ 1
2
C

∫
{|∇un|>L}

|∇un| dx ≤
∫

Ω

W (∇un) dx ≤ εnc→ 0 (3.2)

as n→ ∞. Hence there exists nε such that∫
{|∇un|>L}

|∇un| dx ≤ ε for all n > nε.
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Since ∇un ∈ L1
(
Ω; Rd×N

)
for all n = 1, · · · , nε, by taking L larger, if necessary, we may assume that the

previous inequality holds for all n. This completes the proof of the claim.
Thus we may extract a subsequence (not relabelled) such that

un − 1
|Ω|
∫

Ω

un dx ⇀ u in W 1,1
(
Ω; Rd

)
(3.3)

and {∇un} generates a gradient Young measure {νx}x∈Ω . We claim that

νx = (1 − θ (x)) δξ=A + θ (x) δξ=B LNa.e. in Ω,

where θ (x) ∈ [0, 1] . Indeed, since W is nonnegative and continuous, the Fundamental Theorem on Young
Measures (see e.g. [8, 11, 36]) yields

0 = lim
n→∞

∫
Ω

W (∇un) dx ≥
∫

Ω

∫
Rd×N

W (ξ) dνx (ξ) dx;

hence, for LN a.e x ∈ Ω ∫
Rd×N

W (ξ) dνx (ξ) = 0,

and thus by (H1) the claim follows. In turn

∇u(x) =
∫

Rd×N

ξ dνx (ξ) = (1 − θ (x))A+ θ (x)B LNa.e. in Ω. (3.4)

Let M > 0 and set

ϕ (ξ) := inf
{∫ 1

0

min
{√

W (h (s)),M
}
|h′ (s)| ds : h : [0, 1] → Rd×N piecewise C1, h (0) = ξ, h (1) = A

}
.

Then ϕ is Lipschitz, ϕ (ξ) = 0 if and only if ξ = A, and

{ϕ (∇un)} is uniformly bounded in W 1,1 (Ω; R) . (3.5)

Indeed, ∫
Ω

|∇ (ϕ ◦ ∇un)| dx≤
∫

Ω

√
W (∇un)

∣∣∇2un
∣∣ dx ≤ 1

2
Iεn (un; Ω) ≤ 1

2
c

and ∫
Ω

|ϕ ◦ ∇un| dx ≤
∫

Ω

M |∇un| dx+ ϕ(0) |Ω| ,

where we have used the fact that ϕ(ξ) ≤M |ξ − 0| + ϕ(0). Hence (3.5) holds, and up to a subsequence (not
relabelled)

ϕ (∇un) → H in L1 (Ω; R) , (3.6)

where H ∈ BV (Ω; R) . On the other hand, the Young measure generated by {ϕ (∇un)} is

µx = (1 − θ (x)) δt=ϕ(A) + θ (x) δt=ϕ(B) LN a.e. in Ω,

and the strong convergence in (3.6) now yields θ (x) ∈ {0, 1} LN a.e. in Ω, precisely

θ (x) = χE (x)

for some measurable set E ⊂ Ω. By (3.4)

∇u (x) = (1 − χE (x))A+ χE (x) B

and

H = (1 − χE (x))ϕ (A) + χE (x)ϕ (B)
= χE (x) ϕ (B) ∈ BV (Ω; R) ,

therefore the set E has finite perimeter and ∇u ∈ BV (Ω; {A,B}) . Moreover, since νx = δξ=∇u(x) and by
(3.2) we have that ∇un → ∇u in L1

(
Ω; Rd×N

)
.
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Remark 3.2 (i) We remark that the conclusion of Theorem 3.1 still holds if we do not impose the condition
(H2) but, instead, we assume apriori that the sequence {un} converges weakly in W 1,1(Ω; Rd). Indeed, the
argument follows exactly that of the latter proof once (3.3) has been established.

(ii) If we assume that
W (ξ) ≥ C1 |ξ|p for all ξ ∈ Rd×N with |ξ| ≥ L,

and for some 1 ≤ p <∞, then

unk
− 1

|Ω|
∫

Ω

unk
dx→ u in W 1,p

(
Ω; Rd

)
.

Indeed
C1

∫
{|∇unk |≥L}

|∇unk
|p dx ≤

∫
Ω

W (∇unk
) dx→ 0.

On the other hand,∫
{|∇unk |≤L}

|∇unk
−∇u|p dx ≤ (L+ |A| + |B|)p−1

∫
Ω

|∇unk
−∇u|dx→ 0.

Theorem 3.3 Let u ∈W 1,1
(
Ω; Rd

)
, with ∇u ∈ BV (Ω; {A,B}) . Then the function u has the form

u (x) = u (x′, xN ) = γ0 + axN − 2ψ (x) a,

where γ0 ∈ Rd, γ0 · a = 0, ψ ∈ W 1,∞ (Ω; R) satisfies ∇ψ (x) = χE (x) eN for some set E ⊂ Ω with
PerΩ(E) <∞, and E is layered perpendicularly to eN , that is

∂∗E ∩ Ω =
∞⋃
i=1

ωi × {αi } ,

where the sets ωi ⊂ RN−1 are connected, bounded and open, αi ∈ R. Moreover, in any open subset Ω′ of Ω
with the property that for each t ∈ R the horizontal section

{(x′, xN ) ∈ Ω′ : xN = t} is connected in RN ,

we may write
u (x) = u (x′, xN ) = γ0 + axN − 2h (xN ) a a.e. in Ω′,

where h ∈ W 1,∞ (R; R) , h′ ∈ BV (R; {0, 1}).
Proof. As in [9], in view of the fact that for LN a.e. x ∈ Ω.

∇u(x) = (1 − χE (x))A+ χE (x) B = (1 − χE (x)) a⊗ eN − χE (x) a⊗ eN

= a⊗ eN − 2χE (x) a⊗ eN ,

we may conclude that E is layered perpendicularly to eN , and that the function u has the form

u (x) = u (x′, xN ) = γ0 + axN − 2ψ (x) a,

where γ0 ∈ Rd, γ0 · a = 0, ψ ∈ W 1,∞ (Ω; R) , satisfies ∇ψ (x) = χE (x) eN . Moreover, since

∇x′u (x′, xN ) = ∇x′ (γ0 + axN − 2ψ (x) a) ≡ 0

we conclude that in any open subset Ω′ of Ω with the property that for each t ∈ R the horizontal section

{(x′, xN ) ∈ Ω′ : xN = t} is connected in RN ,

we may represent u as
u (x) = ũ (xN ) = γ0 + axN − 2h (xN ) a a.e. in Ω′,

where h ∈W 1,∞ (R; R) , h′ ∈ BV (R; {0, 1}).
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4 Γ−liminf: the lower bound

In view of (2.2), we define

K∗ := Γ − lim inf
ε→0+

Iε (|xN | a;Q) (4.1)

= inf
{
lim inf
n→∞ Iεn(un;Q) : εn → 0+, un ∈W 2,2

(
Q; Rd

)
, un → |xN | a in L1

(
Q; Rd

)}
,

where, we recall, Q :=
(− 1

2 ,
1
2

)N
.

Theorem 4.1 Assume that W satisfies condition (H1) . Let u ∈W 1,1
(
Ω; Rd

)
, with ∇u ∈ BV (Ω; {A,B}) .

Then
Γ − lim inf

ε→0+
Iε (u; Ω) ≥ K∗ PerΩ(E),

where ∇u = (1 − χE (x))A+ χE (x) B.

The proof of Theorem 4.1 is hinged on the following lemma.

Lemma 4.2 Let ω ⊂ RN−1 be a connected, bounded, open set, with HN−1 (∂ω) = 0, and consider the
cylinder U := ω × (α− h, α+ h) , where α ∈ R and h > 0. If u0 ∈ W 1,1

(
U ; Rd

)
is such that

∇u0(x′, xN ) =
{
A if xN > α,
B if xN< α,

then
Γ − lim inf

ε→0+
Iε (u0;U) = K∗HN−1 (ω) .

Assuming that Lemma 4.2 holds (its proof is left for the remaining of Section 4), we conclude the proof
of Theorem 4.1.

Proof of Theorem 4.1. By Theorem 3.3 and since ∂Ω is Lipschitz, we may write

∂∗E ∩ Ω =
∞⋃
i=1

ωi × {αi } , with
∞∑
i=1

HN−1 (ωi × {αi }) <∞,

where the sets ωi ⊂ RN−1 are connected, bounded and open, with HN−1 (∂ωi) = 0, αi ∈ R. Let δ > 0 and
choose k > 1 such that

HN−1 (∂∗E ∩ Ω) ≤
k∑
i=1

HN−1 (ωi × {αi }) + δ.

Let ω′
i ⊂⊂ ωi be connected, bounded and open, with HN−1 (∂ω′

i) = 0, and such that

HN−1 (ωi × {αi }) ≤ HN−1 (ω′
i × {αi }) +

δ

k
.

Since each ω′
i × {αi } ⊂⊂ Ω we may find h > 0 so small that

k⋃
i=1

ω′
i × (αi − h, αi + h ) ⊂⊂ Ω

12



and the sets ω′
i × (αi − h, αi + h) are mutually disjoint. Then for any sequences εn → 0+ and {un} ⊂

W 2,2
(
Ω; Rd

)
such that un → u in L1

(
Ω; Rd

)
we have

lim inf
n→∞ Iεn(un; Ω) ≥ lim inf

n→∞ Iεn

(
un;

k⋃
i=1

ω′
i × (αi − h, αi + h)

)

≥
k∑
i=1

lim inf
n→∞ Iεn (un;ω′

i × (αi − h, αi + h))

≥
k∑
i=1

K∗HN−1 (ω′
i × {αi })

≥
k∑
i=1

K∗HN−1 (ωi × {αi }) − δK∗

≥ K∗HN−1 (∂∗E ∩ Ω) − 2δK∗,

where we have used Lemma 4.2 to assert that

lim inf
n→∞ Iεn (un;ω′

i × (αi − h, αi + h )) ≥ K∗HN−1 (ω′
i × {αi }) .

Hence
Γ − lim inf

ε→0+
Iε (u; Ω) ≥ HN−1 (∂∗E ∩ Ω) − 2δK∗

and it suffices to let δ → 0+.

It remains to prove Lemma 4.2. Let ω ⊂ RN−1 be a bounded, open set, with HN−1 (∂ω) = 0, and let
h > 0. Define

F (ω;h) :=Γ − lim inf
ε→0+

Iε (|xN | a;ω × (−h, h)) (4.2)

= inf
{
lim inf
n→∞ Iεn(un;ω × (−h, h)) : εn → 0+, un ∈ W 2,2

(
ω × (−h, h) ; Rd

)
,

un → |xN | a in L1
(
ω × (−h, h) ; Rd

)}
.

Note that K∗ = F (Q′; 1
2

)
, where Q′ :=

(− 1
2 ,

1
2

)N−1
.

Lemma 4.3 (i) F (x′ + ω;h) = F (ω;h) for every x′ ∈ RN−1;

(ii) if ω1 ⊂ ω2 then F (ω1;h) ≤ F (ω2;h) ;

(iii) if ω1 ∩ ω2 = ∅ then F (ω1 ∪ ω2;h) ≥ F (ω1;h) + F (ω2;h) ;

(iv) if α > 0 then F (αω;αh) = αN−1F (ω;h) , while if 0 < α < 1 then F (αω;h) ≥ αN−1F (ω;h) ;

(v) F (ω;h) = HN−1 (ω)F (Q′;h) ;

(vi) F (ω;h) = F (ω; δ) for each δ > 0.

We note that Lemma 4.2 is a direct consequence of Lemma 4.3 (v) and (vi).
Proof. (i) follows immediately from the translation invariance of the energies Iεn(un; ·), while (ii) and

(iii) are consequences of the nonnegativeness of the energy densities of Iεn , together with the fact that
admissible sequences for ω2 × (−h, h) are still admissible for ω1 × (−h, h) when ω1 ⊂ ω2.

To prove (iv) let εn → 0+ and let {un} ⊂W 2,2
(
ω × (−h, h) ; Rd

)
be any sequence such that un → |xN | a

in L1
(
ω × (−h, h) ; Rd

)
. Set

vn (x) := αun(x/α), x ∈ αω × (−αh, αh) .
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Clearly |xN | a = α |xN/α| a and so vn → |xN | a in L1
(
αω × (−αh, αh) ; Rd

)
, and we have

F (αω;αh) ≤ lim inf
n→∞

∫
αω×(−αh,αh)

1
αεn

W (∇vn) + αεn|∇2vn|2 dx

= lim inf
n→∞

∫
αω×(−αh,αh)

1
αεn

W
(
∇un

(x
α

))
+ αεn

∣∣∣∣ 1α∇2un

(x
α

)∣∣∣∣2 dx
= lim inf

n→∞ αN
∫
ω×(−h,h)

1
αεn

W (∇un (y)) + αεn

∣∣∣∣ 1α∇2un (y)
∣∣∣∣2 dy

= αN−1 lim inf
n→∞

∫
ω×(−h,h)

1
εn
W (∇un (y)) + εn

∣∣∇2un (y)
∣∣2 dy.

Hence F (αω;αh) ≤ αN−1F (ω;h) , and similarly

F (ω;h) = F
(

1
α
αω;

1
α
αh

)
≤ 1
αN−1

F (αω;αh) .

This proves that F (αω;αh) = αN−1F (ω;h) .
Next let 0 < α < 1; then F (αω;h) ≥ F (αω;αh) = αN−1F (ω;h) .
To show (v) we use Vitali’s Covering Theorem to decompose

ω =
∞⋃
i=1

(ai + ηiQ
′) ∪N0

with HN−1 (N0) = 0, ai + ηiQ
′ mutually disjoint, 0 < ηi < 1, Q′ :=

(− 1
2 ,

1
2

)N−1
, and

∞∑
i=1

ηN−1
i = HN−1 (ω) .

For all k ∈ N, by (ii)-(iv)

F (ω;h) ≥ F
(

k⋃
i=1

(ai + ηiQ
′);h

)
≥

k∑
i=1

F (ai + ηiQ
′;h) ≥

k∑
i=1

ηN−1
i F (Q′;h) .

By letting k → ∞ we conclude
F (ω;h) ≥ HN−1 (ω)F (Q′;h) .

Conversely, with

Q′ =
∞⋃
i=1

(bi + δiω) ∪N1

with HN−1 (N1) = 0, bi + δiω mutually disjoint, and

∞∑
i=1

δN−1
i =

1
HN−1 (ω)

,

we deduce that
F (Q′;h) ≥ 1

HN−1 (ω)
F (ω;h) ,

and we have concluded the proof of (v). This result will entail (vi) provided we show that

F (Q′;h) = F (Q′; δ) (4.3)

for every δ > 0. We first claim that for all k ∈ N

F (kQ′; δ) = kN−1F (Q′; δ) . (4.4)
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Indeed, write

kQ′ =
kN−1⋃
i=1

(ai +Q′) ∪N0

with HN−1 (N0) = 0, ai +Q′ mutually disjoint. By (iv)

kN−1F (Q′; δ) = F (kQ′; kδ) ≥ F (kQ′; δ) ≥
kN−1∑
i=1

F (ai +Q′; δ) = kN−1F (Q′; δ) .

Next we show that

F (Q′; δ) = F
(
Q′;

δ

k

)
.

Indeed by (iv) and (4.4)

F (Q′; δ) =
1

kN−1
F (kQ′; kδ) =

1
kN−1

kN−1F (Q′; kδ) = F (Q′; kδ) ,

and thus

F (Q′; δ) = F
(
Q′; k

δ

k

)
= F

(
Q′;

δ

k

)
.

It follows that if p, k ∈ N, k �= 0, then

F
(
Q′;

p

k
δ
)

= F (Q′; δ) , (4.5)

and to assert (4.3) it suffices now to establish the continuity of F (Q′; ·) . Let rn → r and extract a subsequence
r′n → r. Without loss of generality assume that r′n → r+ (similarly, if r′n → r−). Then

F (Q′; r) ≤ lim inf
n→∞ F (Q′; r′n) .

Let qn ∈ Q such that qnr > r′n > r, qn → 1. Then by (4.5)

F (Q′; r′n) ≤ F (Q′; qnr) = F (Q′; r) ,

and thus
lim sup
n→∞

F (Q′; r′n) ≤ F (Q′; r) .

This conclude the proof.

Remark 4.4 It follows immediately from Lemma 4.3(vi) that the effective energy concentrates near the
interfaces. Precisely, if

F (ω;h) = lim
n→∞ Iεn(un;ω × (−h, h))

then for each 0 < η < h
lim
n→∞ Iεn(un;ω × [(−h, h) \ (−η, η)]) = 0.

Indeed, by Lemma 4.3(vi)

lim
n→∞ Iεn(un;ω × (−h, h)) = F (ω;h) = F (ω; η) ≤ lim inf

n→∞ Iεn(un;ω × (−η, η))

and thus
lim
n→∞ Iεn(un;ω × [(−h, h) \ (−η, η)]) = 0.
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5 Γ−limsup: the upper bound. Geodesic hypotheses.

In agreement with our adopted notation, in what follows the constants C and Cδ may change from line to
line. Throughout this section we assume that W satisfies the following conditions:

(H1) W is continuous, W (ξ) = 0 if and only if ξ ∈ {A,B} , where A = −B = a⊗ eN for some a ∈ Rd \ {0} ;

(H2)′ W (ξ) → ∞ as |ξ| → ∞;

(H3) W (ξ) ≥W (0, ξN ) where ξ = (ξ′, ξN ) ∈ Rd×(N−1) × Rd.

Note that (H3) is verified by the prototype bulk energy density

W (ξ) := min
{
|ξ −A|2 , |ξ −B|2

}
.

5.1 Characterization of K∗

In this subsection we prove that if (H1), (H2)′, (H3) hold then

K∗ = inf

{∫ L

−L
W (0, g (s)) + |g′ (s)|2 ds : L > 0, g piecewise C1, g (L) = −g (−L) = a

}
.

Proposition 5.1 Assume that W satisfies condition (H2)′. Let {εn} ⊂ R+ and {un} ⊂W 2,2
((− 1

2 ,
1
2

)
; Rd
)

be two sequences such that εn → 0+ and

sup
n∈N

∫ 1
2

− 1
2

W (0, u′n)
εn

+ εn |u′′n|2 dt < +∞.

Then
sup
n∈N

sup
t∈

“
−1

2 ,
1
2

” |u′n (t)| < +∞.

Proof. Since u′n ∈ L∞(
(− 1

2 ,
1
2

)
; Rd), without loss of generality we may suppose that 0 < εn <

1
4 . Let

c := sup
n

∫ 1
2

− 1
2

W (0, u′n)
εn

+ εn |u′′n|2 dt < +∞,

and fix εn ∈ (0, 1
4

)
and t ∈ (− 1

2 ,
1
2

)
. If t+ εn <

1
2 then

1
εn

∫ t+εn

t

W (0, u′n) ds ≤ c,

and so there exists tn ∈ (t, t+ εn) such that

W (0, u′n (tn)) ≤ c.

By (H2)′ we may find a constant C = C(c) such that supn |u′n (tn)| ≤ C, and Hölder’s inequality now yields

|u′n (t)| ≤ |u′n (tn)| +
(
εn

∫ t+εn

t

|u′′n|2 ds
)1/2

≤ C +

(
εn

∫ 1
2

− 1
2

|u′′n|2 ds
)1/2

≤ C +
√
c. (5.1)

If t+ εn ≥ 1
2 then t ≥ 1

2 − εn and so t− εn ≥ 1
2 − 2εn > − 1

2 . Therefore we may reason as above, using the
interval (t− εn, t) in place of (t, t+ εn) to obtain (5.1), and we conclude that supt∈(− 1

2 ,
1
2 ) |u

′
n (t)| ≤ C +

√
c.
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Recall that (see (4.1) and (4.2))

K∗ = F (Q′; 1
2

)
:= inf

{
lim inf
n→∞

∫
Q

1
εn
W (∇un) + εn

∣∣∇2un
∣∣2 dx : εn → 0+, {un} ⊂W 2,2

(
Q; Rd

)
,

un → |xN | a in L1
(
Q; Rd

)}
,

where Q := Q′ × (− 1
2 ,

1
2

)
, Q′ :=

(− 1
2 ,

1
2

)N−1
, and introduce the “one-dimensional” version of K∗,

K∗ := inf
{

lim inf
n→∞

∫ 1
2

− 1
2

W (0, u′n)
εn

+ εn |u′′n|2 dt : εn → 0+, un ∈ W 2,2
((− 1

2 ,
1
2

)
; Rd
)
,

un → |t| a in L1
((− 1

2 ,
1
2

)
; Rd
)}
.

An immediate consequence of the latter proposition and the compactness results of Section 3 is the
following corollary.

Corollary 5.2 Assume that W satisfies conditions (H1) and (H2)′. Given any 1 ≤ p <∞ there holds

K∗ = inf
{

lim inf
n→∞

∫ 1
2

− 1
2

W (0, u′n)
εn

+ εn |u′′n|2 dt : εn → 0+, un ∈ W 2,2
((− 1

2 ,
1
2

)
; Rd
)
,

un → |t|a in W 1,p
((− 1

2 ,
1
2

)
; Rd
)}
.

Proof. In view of Proposition 5.1, energy bounded sequences admissible for K∗ are uniformly bounded
in W 1,∞ ((− 1

2 ,
1
2

)
; Rd
)
, and, in particular, must converge weakly to |·| a in W 1,1

((− 1
2 ,

1
2

)
; Rd
)
. The result

now follows from Remark 3.2(i).

Proposition 5.3 Assume that W satisfies conditions (H1) , (H2)′ and (H3) . Then

K∗ = K∗ = K,

where

K = inf

{∫ L

−L
W (0, g (s)) + |g′ (s)|2 ds : L > 0, g piecewise C1, g (L) = −g (−L) = a

}
.

Proof. We divide the proof in three steps.
Step 1: We prove first that K∗ = K∗. Clearly

K∗ ≥ K∗ = F (Q′; 1
2

)
.

Indeed, if {εn} ⊂ R+ and {un} ⊂ W 2,2
((− 1

2 ,
1
2

)
; Rd
)

are two sequences such that εn → 0+ and un → |t| a
in L1

((− 1
2 ,

1
2

)
; Rd
)
, then the sequence vn (x) := un (xN ) is admissible for F (Q′; 1

2

)
. To prove the converse

inequality, let {εn} ⊂ R+ and {un} ⊂W 2,2
(
Q; Rd

)
be such that εn → 0+ and un → |xN | a in L1

(
Q; Rd

)
. For

HN−1 a.e. x′ ∈ Q′ the function ux
′
n (t) := un (x′, t) ∈ W 2,2

((− 1
2 ,

1
2

)
; Rd
)

and ux
′
n → |t| a in L1

((− 1
2 ,

1
2

)
; Rd
)
.

17



Using (H3) and Fatou’s Lemma we have

lim inf
n→∞

∫
Q

1
εn
W (∇un) + εn

∣∣∇2un
∣∣2 dx = lim inf

n→∞

∫
Q′

(∫ 1
2

− 1
2

1
εn
W (∇un) + εn

∣∣∇2un
∣∣2 dt

)
dx′

≥ lim inf
n→∞

∫
Q′

⎛
⎝∫ 1

2

− 1
2

1
εn
W

(
0,
dux

′
n

dt

)
+ εn

∣∣∣∣∣d
2ux

′
n

dt2

∣∣∣∣∣
2

dt

⎞
⎠ dx′

≥
∫
Q′

lim inf
n→∞

⎛
⎝∫ 1

2

− 1
2

1
εn
W

(
0,
dux

′
n

dt

)
+ εn

∣∣∣∣∣d
2ux

′
n

dt2

∣∣∣∣∣
2

dt

⎞
⎠ dx′

≥ K∗
∫
Q′
dx′ = K∗.

Step 2: We now prove that K∗ = K1, where

K1 := inf
{

lim inf
n→∞

∫ 1
2

− 1
2

W (0, u′n)
εn

+ εn |u′′n|2 dt : εn → 0+, un ∈W 2,2
((− 1

2 ,
1
2

)
; Rd
)
,

un → |t| a in L1
((− 1

2 ,
1
2

)
; Rd
)
, u′n = ±a near t = ± 1

2 (resp.)
}
.

Clearly K1 ≥ K∗. To prove the converse inequality, let {εn} ⊂ R+ and {un} ⊂ W 2,2
((− 1

2 ,
1
2

)
; Rd
)

be such
that εn → 0+, un → |t| a in L1

((− 1
2 ,

1
2

)
; Rd
)
, and

K∗ = lim inf
n→∞

∫ 1
2

− 1
2

W (0, u′n)
εn

+ εn |u′′n|2 dt.

Without loss of generality, and up to the extraction of a subsequence, we may assume that

lim inf
n→∞

∫ 1
2

− 1
2

W (0, u′n)
εn

+ εn |u′′n|2 dt = lim
n→∞

∫ 1
2

− 1
2

W (0, u′n)
εn

+ εn |u′′n|2 dt,

and, by Corollary 5.2, that un → |t|a in W 1,1
((− 1

2 ,
1
2

)
; Rd
)
. Since by Remark 4.4

lim
n→∞

∫ 1
2

1
4

W (0, u′n)
εn

+ εn |u′′n|2 + |un − ta| + |u′n − a| dt = 0, (5.2)

there exists t0 ∈ ( 1
4 ,

1
3

)
such that (up to the extraction of a further subsequence, if necessary)

lim
n→∞

[
W (0, u′n (t0))

εn
+ εn |u′′n (t0)|2 + |un (t0) − t0a| + |u′n (t0) − a|

]
= 0. (5.3)

Define
wn (t) := ψn (t)un (t) + (1 − ψn (t)) ((t− t0) a+ un (t0)) ,

where ψn is a smooth cut-off function such that ψn (t) = 0 for t ≥ t0 + εn, ψn (t) = 1 for t ≤ t0, and

|ψ′
n (t)| ≤ C/εn, |ψ′′

n (t)| ≤ C/ε2n.

Then
w′
n (t) = ψ′

n (t) (un (t) − un (t0) − (t− t0) a) + ψn (t)u′n (t) + (1 − ψn (t)) a, (5.4)

and
w′′
n (t) = ψ′′

n (t) (un (t) − un (t0) − (t− t0) a) + 2ψ′
n (t) (u′n (t) − a) + ψn (t)u′′n. (5.5)
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By Hölder’s inequality, for t ∈ (t0, t0 + εn)

|u′n (t) − a| ≤ |u′n (t0) − a| +
(
εn

∫ t0+εn

t0

|u′′n|2 ds
)1/2

, (5.6)

and thus

|un (t) − un (t0) − (t− t0) a| ≤
∫ t0+εn

t0

|u′n (s) − a| ds (5.7)

≤ εn |u′n (t0) − a| + εn

(
εn

∫ t0+εn

t0

|u′′n|2 ds
)1/2

.

Since W is continuous and W (0, a) = 0, we may find ρ > 0 and a modulus of continuity η = η (s) such that

W (0, ξN ) ≤ η (|ξN − a|) for all |ξN − a| ≤ ρ.

By (5.4), (5.6) and (5.7), for t ∈ (t0, t0 + εn) we have

|w′
n (t) − a| ≤ C

εn
|un (t) − un (t0) − (t− t0) a| + |u′n (t) − a|

≤ C |u′n (t0) − a| + C

(
εn

∫ t0+εn

t0

|u′′n|2 ds
)1/2

≤ ρ

for εn sufficiently small, where we have used (5.2) and (5.3). Hence for t ∈ (t0, t0 + εn) and since η is
increasing

W (0, w′
n) ≤ η

(
C |u′n (t0) − a| + C

(
εn

∫ t0+εn

t0

|u′′n|2 ds
)1/2

)
,

and thus ∫ t0+εn

t0

W (0, w′
n)

εn
dt ≤ η

(
C |u′n (t0) − a| + C

(
εn

∫ t0+εn

t0

|u′′n|2 ds
)1/2

)
→ 0.

Similarly, by (5.5), (5.6) and (5.7) and for t ∈ (t0, t0 + εn) ,

|w′′
n (t)| ≤ C

ε2n
|un (t) − un (t0) − (t− t0) a| + C

εn
|u′n (t) − a| + |u′′n|

≤ C

εn
|u′n (t0) − a| + C

εn

(
εn

∫ t0+εn

t0

|u′′n|2 ds
)1/2

+ |u′′n| ,

and we have

εn |w′′
n (t)|2 ≤ C

εn
|u′n (t0) − a|2 + C

∫ t0+εn

t0

|u′′n|2 ds+ Cεn |u′′n|2 .

Hence, in view of (5.2) and (5.3),∫ t0+εn

t0

εn |w′′
n (t)|2 dt ≤ C |u′n (t0) − a|2 + Cεn

∫ t0+εn

t0

|u′′n|2 ds→ 0.

Since wn (t) = un (t) for t ≤ t0 and w′
n (t) = a for t ≥ t0 + εn, we conclude that

lim sup
n→∞

∫ 1
2

− 1
2

W (0, w′
n)

εn
+ εn |w′′

n|2 dt ≤ lim
n→∞

∫ 1
2

− 1
2

W (0, u′n)
εn

+ εn |u′′n|2 dt = K∗.

By repeating the same construction nearby t = − 1
2 we ensure that the new sequence satisfies w′

n = ±a near
t = ± 1

2 resp. Hence K1 ≤ K∗, and the proof of Step 2 is complete.
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Step 3: We finally prove that K∗ = K. Let {εn} ⊂ R+ and {un} ⊂ W 2,2
((− 1

2 ,
1
2

)
; Rd
)

be such that
εn → 0+, un → |t| a in L1

((− 1
2 ,

1
2

)
; Rd
)
, and

K∗ = lim inf
n→∞

∫ 1
2

− 1
2

W (0, u′n)
εn

+ εn |u′′n|2 dt.

In light of Step 2, we may assume, without loss of generality, that u′n = a near t = 1
2 and u′n = −a near

t = − 1
2 . Define vn (s) := 1

εn
un (εns) for s ∈

[
− 1

2εn
, 1

2εn

]
. Then v′n (s) = u′n (εns), v′′n (s) = εnu

′′
n (εns) , and

so ∫ 1
2

− 1
2

W (0, u′n (t))
εn

+ εn |u′′n (t)|2 dt =
∫ 1

2εn

− 1
2εn

W (0, u′n (εns)) + ε2n |u′′n (εns)|2 ds

=
∫ 1

2εn

− 1
2εn

W (0, v′n (s)) + |v′′n (s)|2 ds ≥ K,

therefore K∗ ≥ K. Conversely, let g : [−L,L] → Rd be a piecewise C1 curve, with g (L) = −g (−L) = a.
Consider any sequence {εn} converging to 0+, and define

un (t) :=
∫ t

0

vn (s) ds, vn (t) :=

⎧⎪⎪⎨
⎪⎪⎩

−a if t < −εnL,
g

(
t

εn

)
if |t| ≤ εnL,

a if t > εnL.

(5.8)

As in [23], we have

vn → v0 :=
{ −a if t ≤ 0,
a if t > 0, in Lp

((− 1
2 ,

1
2

)
; Rd
)
, for any 1 ≤ p <∞,

and so un =
∫ t
0 vn (s) ds→ |t| a in W 1,p

((− 1
2 ,

1
2

)
; Rd
)
. Moreover,

K∗ ≤ lim
n→∞

∫ 1
2

− 1
2

W (0, u′n)
εn

+ εn |u′′n|2 dt = lim
n→∞

∫ 1
2

− 1
2

W (0, vn)
εn

+ εn |v′n|2 dt

=
∫ L

−L
W (0, g (s)) + |g′ (s)|2 ds,

and taking the infimum over all such functions g we get the desired inequality.

Remark 5.4 Note that the argument of Step 3 in the latter proof, together with Propositions 5.1 and 5.3,
ensures that given any sequence {εn} converging to 0+ there exists a sequence {un} converging to |xN |a in
W 1,p for all p ∈ [1,+∞), and such that

K∗ = lim
n→∞

∫
Q

1
εn
W (∇un) + εn

∣∣∇2un
∣∣2 dx .

Indeed, for each k ∈ N construct via (5.8) a sequence {un,k} corresponding to a function gk admissible for
K and such that ∫ L

−L
W (0, gk (s)) + |g′k (s)|2 ds ≤ K∗ +

1
k
.

Then, with u(x) := |xN |a we obtain

lim
k→∞

lim
n→∞ ‖un,k − u‖W 1,p(Q;Rd) = 0,

and
lim sup
k→∞

lim
n→∞

∫
Q

1
εn
W (∇un,k) + εn

∣∣∇2un,k
∣∣2 dx ≤ K∗.
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On the other hand, by Theorem 4.1 we always have the opposite inequality, and so

lim
k→∞

lim
n→∞

∫
Q

1
εn
W (∇un,k) + εn

∣∣∇2un,k
∣∣2 dx = K∗.

It suffices now to extract a subsequence {kn} of {k} such that the subsequence zn := un,kn satisfies (see
Lemma 7.2 in [16])

lim
n→∞ ‖zn − u‖W 1,p(Q;Rd) = 0,

and
lim inf
n→∞

∫
Q

1
εn
W (∇zn) + εn

∣∣∇2zn
∣∣2 dx = K∗.

5.2 Special domains

Let
α := inf {xN : x ∈ Ω} , β := sup {xN : x ∈ Ω} . (5.9)

Throughout this subsection we assume that the domain Ω satisfies (see Figure 1):

for each t ∈ R the horizontal section Ωt := {(x′, xN ) ∈ Ω : xN = t} is connected in RN (5.10)

and
t 
→ HN−1 (Ωt) is continuous in (α, β) . (5.11)

Theorem 5.5 Assume that W satisfies the conditions (H1) , (H2)′ and (H3) . Let u ∈ W 1,1
(
Ω; Rd

)
, with

∇u ∈ BV (Ω; {A,B}) . Then
Γ − lim

ε→0+
Iε (u; Ω) = K∗ PerΩ(E), (5.12)

where ∇u(x) = (1 − χE (x))A+ χE (x) B for LN a.e. x ∈ Ω.

Proof. In view of Theorem 4.1, to prove (5.12) it suffices to show that for any sequence {εn} ⊂ R+ such
that εn → 0+ we have

Γ − lim sup
n→∞

Iεn (u; Ω) ≤ K∗ PerΩ(E).

Thus we fix a sequence {εn} ⊂ R+ converging to 0+. For simplicity in the notation we drop the subscript n
so that ε := εn. By Theorem 3.3 and (5.10) we may assume that

u (x) = ũ (xN ) = γ0 + axN − 2h (xN ) a a.e. in Ω,

where h ∈W 1,∞ (R; R) , h′ ∈ BV (R; {0, 1}), with

S (∇u) ∩ Ω =
∞⋃
i=1

Ωli

and Ωli := {x = (x′, xN ) ∈ Ω : xN = li} for some li ∈ R. We divide the proof in two steps.
Step 1: Assume that the number of interfaces is finite, that is

S (∇u) ∩ Ω =
m⋃
i=1

Ωli ,

for some m ∈ N, and some finite family l1 < · · · < lm. Fix k ∈ N, and in view of Proposition 5.3 consider a
piecewise C1 curve gk : [−L,L] → Rd, with gk (L) = −gk (−L) = a, such that∫ L

−L
W (0, gk (s)) + |g′k (s)|2 ds ≤ K∗ +

1
k
. (5.13)
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Let ε > 0 be so small that li + ε L < li+1 − ε L, for i = 1, · · · ,m− 1. Set

vε,k (s) :=
{
gk
(− sgn (u′ (li − ε L) · a) s−liε

)
if li − ε L < s < li + ε L, i = 1, · · · ,m,

ũ′ (s) otherwise in R,

where we have extended ũ′ constantly to (−∞, l1 − ε L) and (lm + ε L,+∞) , and define

uε,k (x) = ũε,k (xN ) := ũ (l1) +
∫ xN

l1

vε,k (s) ds, x ∈ RN .

Then∫
Ω

|∇uε,k −∇u| dx ≤ C
m∑
i=1

∫ li+εL

li−εL

[∣∣∣∣gk
(
± s− li

ε

)∣∣∣∣+ 1
]
ds ≤ 2CmεL+ C

m∑
i=1

ε

∫ L

−L
|gk (t)| dt,

and since uε,k (x) = u (x) when xN = l1, by Poincaré’s inequality we have that uε,k → u in W 1,1
(
Ω; Rd

)
as

ε→ 0+. Further,

lim
ε→0+

Iε (uε,k; Ω) = lim
ε→0+

m∑
i=1

∫
Ω∩{li+εL<xN<li+1+ε L}

W
(
0, gk

(±xN−li
ε

))
ε

+
1
ε

∣∣∣∣g′k
(
±xN − li

ε

)∣∣∣∣2 dx
= lim

ε→0+

m∑
i=1

∫ li+ε L

li−ε L

(
W
(
0, gk

(± s−li
ε

))
ε

+
1
ε

∣∣∣∣g′k
(
±s− li

ε

)∣∣∣∣2
)
HN−1 ({x ∈ Ω : xN = s}) ds

= lim
ε→0+

m∑
i=1

∫ L

−L

(
W (0, gk (t)) + |g′k (t)|2

)
HN−1 ({x ∈ Ω : xN = εt+ li}) dt

=

(∫ L

−L
W (0, gk (t)) + |g′k (t)|2 dt

)
m∑
i=1

HN−1 (Ωli) ≤
(
K∗ +

1
k

) m∑
i=1

HN−1 (Ωli) ,

where we have used (5.11) and (5.13). Hence

lim sup
k→∞

lim
ε→0+

Iε (uε,k; Ω) ≤ K∗
m∑
i=1

HN−1 (Ωli) = K∗ PerΩ (E) ,

and in view of Theorem 4.1 this inequality is actually an identity. As in Remark 5.4, it is possible to extract
a subsequence {kε} of {k} such that the subsequence uε := uε,kε satisfies

lim
ε→0+

‖uε − u‖W 1,1(Ω;Rd) = 0,

and
lim
ε→0+

Iε (uε; Ω) = K∗ PerΩ (E) .

Step 2: Suppose now that the number of interfaces is infinite, that is

S (∇u) ∩ Ω =
∞⋃
i=1

Ωli ,

where Ωli := {x = (x′, xN ) ∈ Ω : xN = li} , li ∈ R. We claim that interfaces can only accumulate at the
top or bottom of Ω, i.e. if l is an accumulation point of {li} then l ∈ {α, β}, where α and β are defined
in (5.9). Indeed, if Ωl �= ∅ then we may find x = (x′, l) ∈ Ω and, in turn, an open cylinder of the form
B′ (x′, r)× (l − h, l + h) ⊂ Ω. For ik large enough B′ (x′; r)×{lik} ⊂ Ω, where {lik} is a subsequence of {li}
converging to l, and so

∞ >

∞∑
i=1

HN−1 (Ωli) ≥
∑
ik

HN−1
(
Ωlik

)
≥
∑
ik

HN−1 (B′ (x′; r)) = ∞,
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and we have reached a contradiction.
Fix an integer m ∈ N and consider

Um := {x ∈ Ω : α+ δm < xN < β − δm} ,

where δm → 0+ and {li} ∩ {α+ δm, β − δm} = ∅. Then LN (Ω\Um) → 0 as m → ∞, and ∇u has a finite
number of interfaces in Um. By Step 1 we may construct a sequence {umε } such that umε → u in W 1,1

(
Um; Rd

)
as ε→ 0+, umε = u in Ω\Um, and

lim
ε→0

Iε (umε ;Um) = K∗ PerUm (E) .

We have

lim
m→∞ lim

ε→0
Iε (umε ; Ω) = lim

m→∞ lim
ε→0

Iε (umε ;Um) = K∗ lim
m→∞PerUm (E) = K∗ PerΩ (E) .

We can conclude as in Step 1.

5.3 x′-connected domains

Throughout this subsection we assume that for each t ∈ R the horizontal section

Ωt := {(x′, xN ) ∈ Ω : xN = t} is connected in RN . (5.14)

Here we allow for the possibility that t 
→ HN−1 (Ωt) is not continuous (see Figure 2). In this case a more
careful analysis is required near the boundary under the additional hypothesis that W is smooth at the wells.

Theorem 5.6 Assume (5.14) and let W satisfy the conditions (H1) , (H2)′ and (H3) . Suppose, in addition,
that W is differentiable at A and B. Let u ∈W 1,1

(
Ω; Rd

)
, with ∇u ∈ BV (Ω; {A,B}) . Then

Γ − lim
ε→0+

Iε (u; Ω) = K∗ PerΩ(E),

where ∇u(x) = (1 − χE (x))A+ χE (x) B for LN a.e. x ∈ Ω.

Proof. By virtue of Theorem 4.1 it suffices to prove that given an arbitrary sequence {εn} converging
to 0+ we have

Γ − lim sup
n→+∞

Iεn(u; Ω) ≤ K∗ PerΩ(E). (5.15)

Fix one such sequence {εn}, and for simplicity of notation abbreviate ε := εn. We divide the proof of (5.15)
into three steps.
Step 1: One interface. We assume first that u has the form

u (x) = |xN | a a.e. in Ω,

so that there is only one interface Ω0 := {x = (x′, xN ) ∈ Ω : xN = 0} , and we may write Ω0 = ω × {0} ,
where ω is an open bounded connected subset of RN−1. Let 0 < h < 1

4 min {β,−α} , where α and β are
defined in (5.9), and consider a sequence {δm} converging to 0+ as m→ +∞. We write δ := δm. For every
δ we construct a smooth cut-off function ψδ ∈ C∞

c

(
RN ; [0, 1]

)
such that ψδ = 1 in ω+

δ × (−h
3 ,

h
3

)
and ψδ = 0

outside ω+
2δ ×

(−h
2 ,

h
2

)
, where for s > 0 we denote ω+

s :=
{
x′ ∈ RN−1 : dist (x′, ω) < s

}
(see Figure 5). In

view of Proposition 5.3 consider a piecewise C1 curve g : [−L,L] → Rd, with g (L) = −g (−L) = a. Extend
g to all of R by setting g (t) = −g (−t) := a for all t > L, and define

uε,δ (x) := ψδ (x) zε (x) + (1 − ψδ (x))u, (5.16)
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Figure 5: Construction for one interface in Step 1 of Theorem 5.6. The shaded region represents {0 < ψδ < 1},
and corresponds to A+

2δ\A+
δ where A+

2δ := ω+
2δ×(−h

2 ,
h
2 ) and A+

δ := ω+
δ ×(−h

3 ,
h
3 ). The function uε,δ coincides

with u outside A+
2δ and with zε inside A+

δ .

where zε (x) :=
∫ xN

0
g
(
s
ε

)
ds (see Figure 5). Note that u ∈W 2,2

(
Ω\ (ω+

δ × (−h
3 ,

h
3

))
; Rd
)
. Then∫

Ω

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx =

∫
{ψδ=1}

1
ε
W (∇zε) + ε

∣∣∇2zε
∣∣2 dx (5.17)

+
∫
{0<ψδ<1}

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx.

By the fact that g (t) = −g (−t) := a for all t > L we have∫
{ψδ=1}

1
ε
W (∇zε) + ε

∣∣∇2zε
∣∣2 dx ≤ HN−1

(
ω+
δ

) ∫ L

−L
W (0, g (s)) + |g′ (s)|2 ds. (5.18)

Also, as W is continuous in Rd×N , W (±a⊗ eN) = 0, and W is differentiable at ±a ⊗ eN , we may find a
modulus of continuity η with

lim
s→0+

η (s)
s

= 0 (5.19)

and such that
W (ξ) ≤ min {η (|ξ − a⊗ eN |) , η (|ξ + a⊗ eN |)} for all ξ ∈ Rd×N . (5.20)

Hence, by (5.20),∫
{0<ψδ<1}

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx ≤

∫
{0<ψδ<1}

1
ε
η (|∇uε,δ −∇u|) + ε

∣∣∇2uε,δ
∣∣2 dx. (5.21)

To estimate the right hand side of (5.21) note that

|∇uε,δ −∇u| ≤ |∇ψδ| |zε − u| + ψδ |∇zε −∇u| , (5.22)∣∣∇2uε,δ
∣∣ ≤ ∣∣∇2ψδ

∣∣ |zε − u| + 2 |∇ψδ| |∇zε −∇u| + ψδ
∣∣∇2zε

∣∣ .
Fix L1 ≥ L. For |xN | ≥ εL1 we have

zε − |xN | a =

{
ε
∫ L
0

(g (s) − a) ds for xN ≥ εL1,

−ε ∫ 0

−L (g (s) + a) ds for xN ≤ −εL1,

(5.23)
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and so from (5.22)
|∇uε,δ −∇u| ≤ Cδ ε,

∣∣∇2uε,δ
∣∣ ≤ Cδ ε (5.24)

for |xN | ≥ εL1, while for |xN | ≤ εL1

|∇ (zε − u)| ≤
∣∣∣g (xN

ε

)∣∣∣+ ‖∇u‖∞ ≤ C,
∣∣∇2zε

∣∣ ≤ 1
ε

∣∣∣g′ (xN
ε

)∣∣∣ ≤ C

ε
, (5.25)

and

|zε (x) − u (x)| ≤ |zε (x′, εL1) − u (x′, εL1)| +
∫ εL1

−εL1

|∇ (zε − u)| dxN ≤ εC.

Hence, from (5.22) we have for |xN | ≤ εL1

|∇uε,δ −∇u| ≤ Cδ ε+ C,
∣∣∇2uε,δ

∣∣ ≤ Cδ +
C

ε
. (5.26)

It now follows from (5.24) and (5.26) that, for ε < h/3L1,∫
{0<ψδ<1}

1
ε
η (|∇uε,δ −∇u|) + ε

∣∣∇2uε,δ
∣∣2 dx ≤

(
1
ε
η (εCδ) + Cδε

3

)
HN−1

(
ω+

2δ

)
h (5.27)

+ HN−1
(
ω+

2δ\ω+
δ

)
2L1ε

(
1
ε
η (εCδ + C) + ε

(
Cδ +

C

ε2

))
.

In view of (5.17), (5.18), (5.21) and (5.27)

∫
Ω

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx ≤

(∫ L

−L
W (0, g (s)) + |g′ (s)|2 ds

)
HN−1

(
ω+
δ

)
(5.28)

+ C

(
1
ε
η (εCδ) + Cδε

3

)
+ C

(
η (εCδ + C) + ε2Cδ + C

)HN−1
(
ω+

2δ\ω+
δ

)
,

and letting ε→ 0+ and then δ → 0+ yields, by (5.19),

lim sup
δ→0+

lim sup
ε→0+

∫
Ω

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx ≤

(∫ L

−L
W (0, g (s)) + |g′ (s)|2 ds

)
HN−1 (ω) . (5.29)

Next we claim that
lim
δ→0+

lim
ε→0+

‖uε,δ − u‖W 1,p(Ω;Rd) = 0 (5.30)

for any 1 ≤ p <∞. Indeed, by (5.24) and (5.26) we have∫
Ω

|∇uε,δ −∇u|p dx ≤ εpCδHN−1
(
ω+

2δ

)
2h+ HN−1

(
ω+

2δ\ω+
δ

)
2L1ε |εCδ + C|p → 0 as ε→ 0.

Since uε,δ (x) = u (x) for |xN | ≥ 2h, by Poincaré’s inequality we have that uε,δ → u in W 1,p
(
Ω; Rd

)
.

To conclude the proof of this step, in view of Proposition 5.3 for every k ∈ N consider a piecewise C1

curve gk : [−L,L] → Rd, with gk (L) = −gk (−L) = a, such that∫ L

−L
W (0, gk (s)) + |g′k (s)|2 ds ≤ K∗ +

1
k
. (5.31)

If we denote by uε,δ,k the function defined in (5.16) and corresponding to gk, by (5.29)–(5.31) we have

lim sup
k→∞

lim sup
δ→0+

lim sup
ε→0+

∫
Ω

1
ε
W (∇uε,δ,k) + ε

∣∣∇2uε,δ,k
∣∣2 dx ≤ K∗HN−1 (ω) , (5.32)

and
lim
k→∞

lim
δ→0+

lim
ε→0+

‖uε,δ,k − u‖W 1,p(Ω;Rd) = 0. (5.33)
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On the other hand, Theorem 4.1 entails

lim inf
k→∞

lim inf
δ→0+

lim inf
ε→0+

∫
Ω

1
ε
W (∇uε,δ,k) + ε

∣∣∇2uε,δ,k
∣∣2 dx ≥ K∗HN−1 (ω) .

This, together with (5.32) and (5.33), allow us to diagonalize the triple-indexed sequence uε,δ,k to obtain
vε := uε,δ(ε),k(δ(ε)) satisfying

lim
ε→0+

‖vε − u‖W 1,p(Ω;Rd) = 0

and
lim
ε→0+

∫
Ω

1
ε
W (∇vε) + ε

∣∣∇2vε
∣∣2 dx = K∗HN−1 (ω) .

The case where the function u has the form

u (x) = − |xN | a a.e. in Ω,

may be treated similarly. We omit the details.
Step 2: Finitely many interfaces. Assume that the number of interfaces is finite, that is

S (∇u) ∩ Ω =
m⋃
i=1

Ωli ,

where Ωli := {x = (x′, xN ) ∈ Ω : xN = li} = ωi × {li} , for some finite family l1 < · · · < lm.
Fix 0 < h < 1

4 min {li+1 − li : i = 1, · · · ,m− 1} and consider a piecewise C1 curve g : [−L,L] → Rd as
in Step 1. We may now apply the construction of Step 1 to each interface, precisely we define

uε,δ (x) :=
{
ψδ,n (x) zε,i (x) + (1 − ψδ,i (x))u (x) for |xN − li| < 2h, i = 1, · · · ,m− 1,
u (x) otherwise,

where now ψδ,i is a smooth cut-off function such that ψδ,i = 1 in ω+
δ,i ×

(
li − h

3 , li + h
3

)
and ψδ,i = 0 outside

ω+
2δ,i ×

(
li − h

2 , li + h
2

)
, where for s > 0 we denote ω+

s,i :=
{
x′ ∈ RN−1 : dist (x′, ωi) < s

}
, and

zε,i (x) := u (x′, li) +

{ ∫ xN−li
0 g

(
s
ε

)
ds if ∇u (x) = a⊗ eN ,

− ∫ −xN+li
0

g
(
s
ε

)
ds if ∇u (x) = −a⊗ eN .

As in Step 1, the argument leading to (5.28) now yields

∫
Ω

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx ≤

(∫ L

−L
W (0, g (s)) + |g′ (s)|2 ds

)
m∑
i=1

HN−1
(
ω+
δ,i

)

+ C

(
1
ε
η (εCδ) + Cδε

3

)
+ C

(
η (εCδ + C) + ε2Cδ + C

) m∑
i=1

HN−1
(
ω+

2δ,i\ω+
δ,i

)

and the proof is concluded as before upon letting first ε→ 0+, then δ → 0+, and finally k → +∞ where we
consider in place of g a realizing sequence {gk} for K∗.
Step 3: Countably many interfaces. If the number of interfaces is infinite, we may proceed exactly as in
Step 2 of Theorem 5.5. We omit the details.

5.4 General domains

Let τ : R → R be an odd, C∞ function, with τ (0) = τ ′ (0) = 0, and such that τ (t) = t if |t| ≥ 1. For ε > 0
define

uAAε (x) := ετ
(xN
ε

)
a, uBBε (x) := −uAAε (x) , uABε (x) := ετ

( |xN |
ε

)
a, uBAε (x) := −uABε (x) .
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Figure 6: Construction for one interface in Step 1 of Proposition 5.7. The shaded region represents {0 <
ψδ < 1}, and corresponds to A−

δ \A−
2δ where A−

δ := ω−
δ × (−h/2, h/2) and A−

2δ := ω−
2δ × (−h/3, h/3). The

function uε,δ coincides with uABε outside A−
δ and with zε inside A−

2δ. A similar construction is used in Step
2, with uABε replaced by uAAε , and zε replaced by u.

Proposition 5.7 (Lateral matching) Assume that Ω = ω× (−h, h) , where ω ⊂ RN−1 is a bounded, open
connected set with HN−1 (∂ω) = 0, and let W satisfy (H1) , (H2)′ and (H3) . Suppose, in addition, that
W is differentiable at A and B. Let u ∈ W 1,1

(
Ω; Rd

)
, with ∇u ∈ BV (Ω; {A,B}) . Let {εn} ⊂ R+ be a

sequence converging to zero. Then there exists {un} ⊂ W 2,2
(
Ω; Rd

)
such that un → u in W 1,p

(
Ω; Rd

)
for

all p ∈ [1,+∞), un = u nearby xN = ±h,

un (x) = uFGεn
(x) + u (x′, 0) nearby ∂ω × (−h, h) where ∇u =

{
F if xN > 0,
G if xN < 0, F,G ∈ {A,B} ,

and
lim

n→+∞

∫
Ω

1
εn
W (∇un) + εn

∣∣∇2un
∣∣2 dx = K∗HN−1 (S (∇u) ∩ Ω) .

Proof. In light of the argument used in Remark 5.4, we claim that given an arbitrary sequence {εn}
converging to 0+, it suffices to construct a double indexed sequence {un,k} satisfying the prescribed boundary
conditions, such that

lim
k→+∞

lim
n→+∞ ‖uk,n − u‖L1(Ω;Rd) = 0,

and
lim sup
k→+∞

lim sup
n→+∞

∫
Ω

1
εn
W (∇uk,n) + ε

∣∣∇2uk,n
∣∣2 dx ≤ K∗HN−1 (ω) .

We fix one such sequence {εn}, abbreviated ε := εn, and we divide the proof leading to the construction of
the double indexed sequence uk,n into two steps corresponding to the cases where ∇u has either no interfaces
or one interface in the cylinder Ω.
Step 1: Assume that ∇u ≡ sgn (xN ) a ⊗ eN in Ω. Without loss of generality we may take u (x) = |xN | a.
We proceed as in Step 1 of the proof of Theorem 5.6 until (5.16) which should now be replaced by

uε,δ (x) := ψδ (x) zε (x) + (1 − ψδ (x))uABε , (5.34)

where δ stands for the elements δm of a sequence converging to 0+ as m → +∞, zε (x) :=
∫ xN

0
g
(
s
ε

)
ds as

before, ψδ ∈ C∞
c

(
RN ; [0, 1]

)
is a a smooth cut-off function such that ψδ = 1 in ω−

2δ ×
(−h

3 ,
h
3

)
and ψδ = 0
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outside ω−
δ × (−h

2 ,
h
2

)
, where for s > 0 we denote ω−

s := {x′ ∈ ω : dist (x′, ∂ω) > s} (see Figure 6). In turn
(5.17) becomes ∫

Ω

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx =

∫
{ψδ=1}

1
ε
W (∇zε) + ε

∣∣∇2zε
∣∣2 dx (5.35)

+
∫
{ψδ=0}

1
ε
W
(∇uABε )

+ ε
∣∣∇2uABε

∣∣2 dx
+
∫
{0<ψδ<1}

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx.

Then (5.18) should be replaced by∫
{ψδ=1}

1
ε
W (∇zε) + ε

∣∣∇2zε
∣∣2 dx ≤ HN−1

(
ω−

2δ

) ∫ L

−L
W (0, g (s)) + |g′ (s)|2 ds, (5.36)

(5.21) continues to hold, while∫
{ψδ=0}

1
ε
W
(∇uABε )

+ ε
∣∣∇2uABε

∣∣2 dx ≤ HN−1
(
ω\ω−

δ

) ∫ 1

−1

W (0, τ ′ (|t|) sgn (t) a) + |τ ′′ (|t|)|2 dt (5.37)

≤ CHN−1
(
ω\ω−

δ

)
.

To estimate the right hand side of (5.21) we replace (5.22) with

|∇uε,δ −∇u| ≤ |∇ψδ|
∣∣zε − uABε

∣∣+ ψδ |∇zε −∇u| + (1 − ψδ)
∣∣∇uABε −∇u∣∣ , (5.38)∣∣∇2uε,δ

∣∣ ≤ ∣∣∇2ψδ
∣∣ ∣∣zε − uABε

∣∣+ 2 |∇ψδ|
∣∣∇zε −∇uABε

∣∣+ ψδ
∣∣∇2zε

∣∣+ (1 − ψδ)
∣∣∇2uABε

∣∣ .
Let L1 := max {1, L} . Then for |xN | ≥ εL1 we have uABε = |xN | a and so from (5.23) and (5.38) the bound
(5.24) continues to hold for |xN | ≥ εL1. Moreover∣∣∇ (uABε − u

)∣∣ ≤ ∣∣∣τ ′ (±xN
ε

)
a
∣∣∣+ ‖∇u‖∞ ≤ C,

∣∣∇2uABε
∣∣ ≤ 1

ε

∣∣∣τ ′′ (±xN
ε

)∣∣∣ ≤ C

ε
(5.39)

for 0 < |xN | ≤ εL1, and thus

∣∣zε (x) − uABε (x)
∣∣ ≤ ∣∣zε (x′, εL1) − uABε (x, εL1)

∣∣+ ∫ εL1

−εL1

∣∣∇ (zε − uABε
)∣∣ dxN ≤ εC. (5.40)

Hence, from (5.25), (5.38), (5.39) and (5.40) the estimate (5.26) is still valid for |xN | ≤ εL1, while (5.27)
becomes ∫

{0<ψδ<1}

1
ε
η (|∇uε,δ −∇u|) + ε

∣∣∇2uε,δ
∣∣2 dx ≤

(
1
ε
η (εCδ) + Cδε

3

)
HN−1 (ω) 2h (5.41)

+ HN−1
(
ω−
δ \ω−

2δ

)
2L1ε

(
1
ε
η (εCδ + C) + ε

(
Cδ +

C

ε2

))
.

In view of (5.35), (5.37), (5.36), (5.21) and (5.41), we now have∫
Ω

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx ≤CHN−1

(
ω\ω−

2δ

)
+

(∫ L

−L
W (0, g (s)) + |g′ (s)|2 ds

)
HN−1 (ω)

+ C

(
1
ε
η (εCδ) + Cδε

3

)
+ C

(
η (εCδ + C) + ε2Cδ + C

)HN−1
(
ω−
δ \ω−

2δ

)
,

and letting ε→ 0+ and then δ → 0+ yields, by (5.19),

lim sup
δ→0+

lim sup
ε→0+

∫
Ω

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx ≤ HN−1 (ω)

∫ L

−L
W (0, g (s)) + |g′ (s)|2 ds.
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We can now continue the argument of Step 1 in the proof of Theorem 5.6 from (5.29) onwards.
Step 2: Assume that ∇u ≡ A = a⊗ eN in Ω. Without loss of generality we may assume that u (x) = axN .
Fix δ > 0 and let ψδ be defined as in Step 1. Define

uε,δ (x) := ψδ (x) u (x) + (1 − ψδ (x)) uAAε (x) .

For |xN | ≥ ε we have uAAε (x) = u (x) and so uε,δ (x) = u (x) . Since ψδ = 1 in ω−
2δ ×

(−h
3 ,

h
3

)
and ψδ = 0

outside ω−
δ × (−h

2 ,
h
2

)
, for 0 < ε < h we have∫

Ω

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx ≤

∫
(ω\ω−

δ )×(−ε,ε)

1
ε
W
(∇uAAε )

+ ε
∣∣∇2uAAε

∣∣2 dx (5.42)

+
∫
(ω−

δ \ω−
2δ)×(−ε,ε)

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx

≤ CHN−1
(
ω\ω−

δ

)
+
∫
(ω−

δ \ω−
2δ)×(−ε,ε)

1
ε
η (|∇uε,δ − a⊗ eN |) + ε

∣∣∇2uε,δ
∣∣2 dx,

where we used (5.37) (which continues to hold, provided we replace the derivatives of τ (|·|) with those of
τ (·)) and (5.20).

To estimate the last integral on the right hand side of (5.42) note that

|∇uε,δ (x) −∇u (x)| ≤ |∇ψδ (x)| ∣∣uAAε (x) − u (x)
∣∣+ ψδ (x)

∣∣∇uAAε (x) −∇u (x)
∣∣ , (5.43)∣∣∇2uε,δ (x)

∣∣ ≤ ∣∣∇2ψδ (x)
∣∣ ∣∣uAAε (x) − u (x)

∣∣+ 2 |∇ψδ (x)| ∣∣∇uAAε (x) −∇u (x)
∣∣+ ψδ (x)

∣∣∇2uAAε (x)
∣∣ .

The bounds (5.39) and (5.40) are still valid for |xN | ≤ ε, with L1 := 1 and uABε replaced by uAAε . Hence
from (5.43) we deduce that (5.26) holds for |xN | ≤ ε, and thus by (5.42)∫

Ω

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx ≤ CHN−1

(
ω\ω−

δ

)
+ HN−1

(
ω−
δ \ω−

2δ

)
2
(
η (εCδ + C) + ε2Cδ + C

)
,

and by (5.19), letting ε→ 0+ and then δ → 0+ yields

lim sup
δ→0+

lim sup
ε→0+

∫
Ω

1
ε
W (∇uε,δ) + ε

∣∣∇2uε,δ
∣∣2 dx = 0.

The argument of Remark 5.4 brings the proof of this case to a closure. The remaining two cases where
∇u ≡ −a ⊗ eN in Ω and ∇u ≡ − sgn (xN ) a ⊗ eN in Ω are treated in a way similar to Steps 1 and 2. We
omit the details.

In preparation for the main result of this section, Theorem 5.10, we establish the following inequality for
level sets.

Lemma 5.8 For each t ∈ R let Ωt := {(x′, xN ) ∈ Ω : xN = t} denote a horizontal interface of Ω. Then

lim sup
ε→0+

1
2ε

∫ ε

−ε
HN−1 (Ωs+t) ds ≤ HN−1

(
Ωt
)
.

Proof. Write Ωt = ω × {t}, fix δ > 0, and consider an open set Σ ⊃⊃ ω such that

HN−1 (Σ × {t}) ≤ HN−1
(
Ωt
)

+ δ.

We claim that if ε is sufficiently small then

{x ∈ Ω : |xN − t| < ε} ⊂ Σ × (t− ε, t+ ε) .

Indeed, if this was not the case then there would exist a sequence {xn} ⊂ Ω, with xn = (x′n, (xn)N ) , such
that

(xn)N → t and x′n /∈ Σ. (5.44)
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By extracting a subsequence, if necessary, we may assume that xn → (x′, t) . But then (x′, t) ∈ Ωt ⊂ Σ×{t} ,
which is in contradiction with (5.44) since Σ is open. Hence the claim holds, and in turn by Fubini’s Theorem∫ ε

−ε
HN−1 (Ωs+t) ds = |{x ∈ Ω : |xN − t| < ε}| ≤ |Σ × (t− ε, t+ ε)| = 2εHN−1 (Σ × {t}) .

Hence
1
2ε

∫ ε

−ε
HN−1 (Ωs+t) ds ≤ HN−1 (Σ × {t}) ≤ HN−1

(
Ωt
)

+ δ,

and by letting first ε→ 0+ and then δ → 0+ we conclude the proof.
The next result is a generalization of the Isoperimetric Inequality (see [4, 13]).

Theorem 5.9 Let Ω ⊂ RN be an open, bounded connected domain with Lipschitz boundary. Then there
exists a constant Ciso, depending on N and on Ω, such that for every set E ⊂ Ω of finite perimeter there
holds

min {|E| , |Ω\E|}1− 1
N ≤ Ciso PerΩ(E). (5.45)

Proof. By Poincaré’s inequality there exists a constant C (N,Ω) such that∫
Ω

|v − vΩ|N/(N−1)
dx ≤ C |Dv| (Ω)

for all v ∈ BV (Ω; R) , where

vΩ :=
1
|Ω|
∫

Ω

v dx

and |Dv| (Ω) is the total variation of Dv. If we take v := χE then vΩ := |E|
|Ω| and so

C PerΩ(E) = C |Dv| (Ω) ≥
∫

Ω

|v − vΩ|N/(N−1)
dx =

∫
Ω

∣∣∣∣χE − |E|
|Ω|
∣∣∣∣N/(N−1)

dx

= |Ω|−N/(N−1) (|Ω| − |E|)N/(N−1) |E| + |Ω|−N/(N−1) |E|N/(N−1) |Ω\E|
≥ |Ω|−N/(N−1) min {|E| , |Ω\E|}1− 1

N (|E| + |Ω\E|)
= |Ω|−1/(N−1) min {|E| , |Ω\E|}1− 1

N .

Setting Ciso := C(N,Ω) |Ω|1/(N−1) we conclude the proof.

Theorem 5.10 Let Ω ⊂ RN be an open, bounded, simply connected domain with Lipschitz boundary. As-
sume that W satisfies the conditions (H1) , (H2)′ and (H3) . Suppose, in addition, that W is differentiable
at A and B. Let u ∈W 1,1

(
Ω; Rd

)
, with ∇u ∈ BV (Ω; {A,B}) . Then

Γ − lim
ε→0+

Iε (u; Ω) = K∗ PerΩ(E),

where ∇u(x) = (1 − χE (x))A+ χE (x) B for LN a.e. x ∈ Ω.

Proof. Just as in the proofs of the previous Γ-limit results, in view of Theorem 4.1 and of Remark 5.4 it
suffices to show that given an arbitrary sequence {εn} converging to 0+ we may construct a double indexed
sequence {un,k} such that

lim
k→+∞

lim
n→+∞ ‖uk,n − u‖L1(Ω;Rd) = 0,

and
lim sup
k→+∞

lim sup
n→+∞

∫
Ω

1
εn
W (∇uk,n) + ε

∣∣∇2uk,n
∣∣2 dx ≤ K∗HN−1 (ω) .

We fix one such sequence {εn}, abbreviated ε := εn, and we divide the proof leading to the construction of
the double indexed sequence uk,n into four steps.
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Figure 7: Construction for the case of one hyperplane, with continuously varying interface area, in Step 1 of
Theorem 5.10. The functions u1

ε,δ and u2
ε,δ used in the two cylinders have been constructed in Proposition

5.7, and on the cylinder boundaries agree with uABε and uBBε , respectively. The shaded region represents
the set Eε,δ.

Step 1: One hyperplane– case 1. We assume first that

S (∇u) ∩ Ω ⊂ Ω0 := {x = (x′, xN ) ∈ Ω : xN = 0}

and that (see Figure 1)
t 
→ HN−1 (Ωt) is continuous at t = 0. (5.46)

Then we may write

Ω0 =
∞⋃
i=1

ωi × {0} ,

where the open sets ωi ⊂ RN−1 are pairwise disjoint and connected. Since Ω is bounded we know that

∞∑
i=1

HN−1 (ωi × {0}) <∞.

For fixed δ > 0, standing for an arbitrary element of a sequence {δk} converging to 0+, choose M > 1 so
large that

∞∑
i=M+1

HN−1 (ωi × {0}) < δ, (5.47)

and for each i = 1, · · · ,M, let ωi,δ ⊂⊂ ωi be such that

HN−1 ((ωi\ωi,δ) × {0}) < δ

M
. (5.48)

Since ωi,δ × {0} ⊂⊂ Ω there exists h > 0 such that the cylinders ωi,δ × (−h, h) ⊂⊂ Ω for each i = 1, · · · ,M
(see Figure 7). In each cylinder ωi,δ × (−h, h) we may apply Proposition 5.7 to obtain sequences

{
uiε,δ

}
⊂

W 2,2
(
ωi,δ × (−h, h) ; Rd

)
such that uiε,δ → u in W 1,2

(
ωi,δ × (−h, h) ; Rd

)
, uiε,δ = u nearby xN = ±h,

uiε,δ (x) = uFGε (x) + u (x′, 0) nearby ∂ωi,δ × (−h, h) , where ∇u =
{
F in ωi,δ × (0, h) ,
G in ωi,δ × (−h, 0) , F,G ∈ {A,B} ,
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and
lim
ε→0+

∫
ωi,δ×(−h,h)

1
ε
W
(∇uiε,δ)+ ε

∣∣∇2uiε,δ
∣∣2 dx = K∗HN−1 (S (∇u) ∩ (ωi,δ × {0})) . (5.49)

Define

vε,δ (x) :=

⎧⎪⎪⎨
⎪⎪⎩

uiε,δ (x) if x ∈ ωi,δ × (0, h) , i = 1, · · · ,M,

uAAε (x) + u (x′, 0) if x ∈ Ω\
(⋃M

i=1 ωi,δ × (−h, h)
)

and ∇u (x) = A,

uBBε (x) + u (x′, 0) if x ∈ Ω\
(⋃M

i=1 ωi,δ × (−h, h)
)

and ∇u (x) = B.

(5.50)

We claim that {vε,δ} ⊂W 2,∞ (Ω; Rd
)
, vε,δ → u in L1

(
Ω; Rd

)
and

lim sup
δ→0+

lim sup
ε→0+

∫
Ω

1
ε
W (∇vε,δ) + ε

∣∣∇2vε,δ
∣∣2 dx ≤ K∗HN−1 (S (∇u) ∩ Ω) .

Define

Eε,δ :=

{
x ∈ Ω\

(
M⋃
i=1

ωi,δ × (−h, h)

)
: |xN | < ε

}
.

Since uFGε (x) + u (x′, 0) = u (x) for |xN | ≥ ε we have∫
Ω

1
ε
W (∇vε,δ) + ε

∣∣∇2vε,δ
∣∣2 dx =

M∑
i=1

∫
ωi,δ×(−h,h)

1
ε
W
(∇uiε,δ)+ ε

∣∣∇2uiε,δ
∣∣2 dx (5.51)

+
∫
Eε,δ

1
ε
W (∇vε,δ) + ε

∣∣∇2vε,δ
∣∣2 dx

=
M∑
i=1

∫
ωi,δ×(−h,h)

1
ε
W
(∇uiε,δ)+ ε

∣∣∇2uiε,δ
∣∣2 dx

+
1
ε

∫
Eε,δ

W
(
0,±τ ′

(
±xN

ε

)
a
)

+
∣∣∣τ ′′ (±xN

ε

)∣∣∣2 dx.
By Fubini’s Theorem we have

1
ε

∫
Eε,δ

W
(
0,±τ ′

(
±xN

ε

)
a
)

+
∣∣∣τ ′′ (±xN

ε

)∣∣∣2 dx ≤ C
1
ε

∫ ε

−ε

(
HN−1 (Ωs) −

M∑
i=1

LN−1 (ωi,δ)

)
ds

= C

(
1
ε

∫ ε

−ε
HN−1 (Ωs) ds− 2

M∑
i=1

LN−1 (ωi,δ)

)

→ 2C

(
HN−1 (Ω0) −

M∑
i=1

HN−1 (ωi,δ × {0})
)

as ε→ 0+, and where we have used (5.46). By (5.47), (5.48), (5.49) and (5.51) we obtain

lim sup
ε→0+

∫
Ω

1
ε
W (∇vε,δ) + ε

∣∣∇2vε,δ
∣∣2 dx ≤ K∗

M∑
i=1

HN−1 (S (∇u) ∩ (ωi,δ × {0}))

+ C

∞∑
i=M+1

HN−1 (ωi × {0}) + Cδ

≤ K∗HN−1 (S (∇u) ∩ Ω) + Cδ.

It now suffices to let δ → 0+.
Step 2: One hyperplane– case 2. Next we remove condition (5.46), and thus we only assume that (see
Figure 2)

S (∇u) ∩ Ω ⊂ Ω0 := {x = (x′, xN ) ∈ Ω : xN = 0} .
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Figure 8: Construction for one hyperplane in Step 2 of Theorem 5.10. The function vε,δ, which is used
everywhere except for the set B−

δ := Ξ−
δ × (−h/2, h/2), is the one constructed in Step 1. Inside B−

2δ := Ξ−
2δ×

(−h/3, h/3), the limit u is used directly. The set Fε,δ is the shaded region. The two boxes ω−
1,δ× (−h/2, h/2)

and ω−
2,δ × (−h/2, h/2) are also shown.

Write
∂Ω ∩ {x = (x′, xN ) ∈ RN : xN = 0

}
=: (Ξ × {0}) ∪ E,

where Ξ is an open subset of RN−1 and HN−1 (E) = 0. Fix δ > 0 and consider a smooth cut-off function
ψδ such that ψδ = 1 in Ξ−

2δ ×
(−h

3 ,
h
3

)
and ψδ = 0 outside Ξ−

δ × (−h
2 ,

h
2

)
, where for s > 0 we denote

Ξ−
s := {x′ ∈ Ξ : dist (x′, ∂Ξ) > s} (see Figure 8). For x ∈ Ω define

wε,δ (x) := ψδ (x) u (x) + (1 − ψδ (x)) vε,δ,

where {vε,δ} is the sequence defined in (5.50). Note that u ∈ W 2,2
(
Ω ∩ Ξ−

δ × (−h
2 ,

h
2

)
; Rd
)
. Set

Fε,δ :=

{
x ∈ Ω\

((
Ξ−
δ × (−h, h)

) ∪ M⋃
i=1

(ωi,δ × (−h, h))

)
: |xN | < ε

}
.

Using (5.51) we have∫
Ω

1
ε
W (∇wε,δ) + ε

∣∣∇2wε,δ
∣∣2 dx =

∫
{ψδ=0}

1
ε
W (∇vε,δ) + ε

∣∣∇2vε,δ
∣∣2 dx

+
∫
{0<ψδ<1}

1
ε
W (∇wε,δ) + ε

∣∣∇2wε,δ
∣∣2 dx

≤
M∑
i=1

∫
ωi,δ×(−h,h)

1
ε
W
(∇uiε,δ)+ ε

∣∣∇2uiε,δ
∣∣2 dx+

1
ε

∫
Fε,δ

W
(
0,±τ ′

(
±xN

ε

)
a
)

+
∣∣∣τ ′′ (±xN

ε

)∣∣∣2 dx
(5.52)

+
∫
{0<ψδ<1}

1
ε
W (∇wε,δ) + ε

∣∣∇2wε,δ
∣∣2 dx.
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The second integral on the right hand side of (5.52) may be estimated as before to obtain

lim sup
ε→0+

1
ε

∫
Fε,δ

W
(
0,±τ ′

(
±xN

ε

)
a
)

+
∣∣∣τ ′′ (±xN

ε

)∣∣∣2 dx (5.53)

≤ lim sup
ε→0+

C
1
ε

∫ ε

−ε

(
HN−1 (Ωs) − LN−1

(
Ξ−
δ

)− M∑
i=1

LN−1 (ωi,δ)

)
ds

= C lim sup
ε→0+

(
1
ε

∫ ε

−ε
HN−1 (Ωs) ds− 2LN−1

(
Ξ−
δ

)− 2
M∑
i=1

LN−1 (ωi,δ)

)

≤ 2C

(
HN−1

(
Ω0

)− LN−1
(
Ξ−
δ

)− M∑
i=1

HN−1 (ωi,δ × {0})
)

≤ 2C

(
HN−1

((
Ξ\Ξ−

δ

)× {0})+
∞∑

i=M+1

HN−1 (ωi × {0}) + δ

)
,

where we have used Lemma 5.8.
The estimate of the third integral on the right hand side of (5.52) is very similar to the proof of Step

2 of Proposition 5.7. Indeed, for |xN | ≥ ε we have uFGε (x) + u (x′, 0) = u (x) and so wε,δ = u in the set
{x ∈ Ω : 0 < ψδ (x) < 1, |xN | ≥ ε} . Hence∫

{0<ψδ<1}

1
ε
W (∇wε,δ) + ε

∣∣∇2wε,δ
∣∣2 dx ≤

∫
(Ξ−

δ \Ξ−
2δ)×(−ε,ε)

1
ε
η (|∇wε,δ −∇u|) + ε

∣∣∇2
ε,δw

∣∣2 dx, (5.54)

where we used (5.20) and we have extended u to all of RN as an affine function. The estimates (5.38), (5.39)
and (5.40) continue to hold for x ∈ (Ξ−

δ \Ξ−
2δ

) × (−ε, ε), with uABε replaced by uFGε . Hence from (5.38) we
deduce that (5.26) is still valid for x ∈ (Ξ−

δ \Ξ−
2δ

)× (−ε, ε) , and thus by (5.52)-(5.54) we obtain

lim sup
ε→0+

∫
Ω

1
ε
W (∇wε,δ) + ε

∣∣∇2wε,δ
∣∣2 dx ≤ K∗HN−1 (S (∇u) ∩ Ω) + Cδ + HN−1

(
Ξ−
δ \Ξ−

2δ

)
2 (η (C) + C) .

Letting δ → 0+ concludes the proof.
Step 3: Finitely many hyperplanes. Assume that

S (∇u) ∩ Ω ⊂
M⋃
i=1

Ωli ,

where Ωli := {x = (x′, xN ) ∈ Ω : xN = li} = ωi × {li} for some finite family l1 < · · · < lM .
Fix 0 < h < 1

2 min {li+1 − li : i = 1, · · · ,M − 1} and let {ε} ⊂ R+ be a sequence converging to zero.
Define

Ωi := {x ∈ Ω : |xN − li| < 2h} .
By Step 2 applied to Ωi we may find sequences

{
uiε
} ⊂ W 2,2

(
Ωi; Rd

)
such that uiε → u in W 1,2

(
Ωi; Rd

)
,

uiε = u nearby xN = li ± h, and

lim
ε→0+

∫
Ωi

1
ε
W
(∇uiε)+ ε

∣∣∇2uiε
∣∣2 dx = K∗HN−1

(
S (∇u) ∩ Ωi

)
.

It suffices to define

uε (x) :=
{
uiε (x) if x ∈ Ωi, i = 1, · · · ,M,
u (x) otherwise.

Then {uε} ⊂W 2,2
(
Ω; Rd

)
, uε → u in W 1,2

(
Ω; Rd

)
, and

lim
ε→0+

∫
Ω

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 dx = K∗HN−1 (S (∇u) ∩ Ω) .
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Step 4: Countably many hyperplanes. Assume that

S (∇u) ∩ Ω =
∞⋃
i=1

ωi × {li} ,

where ωi ⊂ RN−1 are connected open sets with ∂ (ωi × {li}) ⊂ ∂Ω and {li} is a sequence of real numbers
(not necessarily distinct). Fix 0 < δ < min

{
1, 1

2 |Ω|} . Since

HN−1 (S (∇u) ∩ Ω) =
∞∑
i=1

HN−1 (ωi × {li}) <∞, (5.55)

there exists an integer M = M (δ) such that

∞∑
i=M+1

HN−1 (ωi × {li}) < 1
c0
δ < 1,

where c0 := max
{

1, C
N

N−1
iso

}
and Ciso is the isoperimetric constant introduced in (5.45). As Ω is simply

connected, for each i = M +1, · · · , the set Ω\ (ωi × {li}) may be written as the union of two open connected
disjoint sets Ei and Ω\Ei, where |Ei| ≥ 1

2 |Ω| . By Theorem 5.9

min {|Ei| , |Ω\Ei|} ≤ c0HN−1 (∂Ei ∩ Ω)
N

N−1 = c0HN−1 (ωi × {li})
N

N−1 < δ <
1
2
|Ω| ,

and so |Ω\Ei| ≤ c0HN−1 (ωi × {li})
N

N−1 . Set uM := u, and for each i = M + 1, · · · , define ui as ui−1 in the
set Ei, while we extend ui as an affine function outside Ei. Thus ∇ui is continuous across ωi × {li} and

S
(∇ui) ∩ Ω ⊂

⎛
⎝ M⋃
j=1

ωj × {lj}
⎞
⎠ ∪

⎛
⎝ ∞⋃
j=i+1

ωj × {lj}
⎞
⎠ . (5.56)

Clearly ∇ui ∈ BV (Ω; {A,B}) and by (5.55) and (5.56)

sup
i

HN−1
(
S
(∇ui) ∩ Ω

)
<∞.

In addition, ui = u on Ω\
(⋃∞

j=M+1 (Ω\Ej)
)

=
⋂∞
j=M+1 Ej , with∣∣∣∣∣∣

∞⋂
j=M+1

Ej

∣∣∣∣∣∣ ≥ |Ω| − c0

∞∑
j=M+1

HN−1 (ωj × {lj})
N

N−1 ≥ |Ω| − c0

∞∑
j=M+1

HN−1 (ωj × {lj}) ≥ |Ω|
2
. (5.57)

By Poincaré’s inequality we can extract a subsequence (not relabelled) converging in W 1,1
(
Ω; Rd

)
to a

function vM , with ∇vM ∈ BV (Ω; {A,B}) ,

vM = u on
∞⋂

i=M+1

Ei, (5.58)

and

S
(∇vM) ∩ Ω ⊂

M⋃
j=1

ωj × {lj} .

In order to assert the latter inclusion, consider a point x0 /∈
⋃M
j=1 ωj × {lj} , and find r > 0 such that

Q (x0, r) ⊂ Ω\
⎛
⎝ M⋃
j=1

ωj × {lj}
⎞
⎠ .
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If i is large enough so that HN−1 (ωi × {li}) < rN−1 then, clearly, and in light of (5.56),

Q (x0, r) ∩ S
(∇ui) = ∅.

We deduce, therefore, that ∇ui ∈ W 1,∞ (Q (x0, r) ; Rd×N
)

and thus ∇vM ∈ W 1,∞ (Q (x0, r) ; Rd×N
)
. In

particular, x0 /∈ S
(∇vM) .

Let {ε} ⊂ R+ be a sequence converging to zero. By Step 3 we may find sequences
{
vMε
} ⊂W 2,2

(
Ω; Rd

)
such that vMε → vM in W 1,2

(
Ω; Rd

)
as ε→ 0+, and

lim
ε→0+

∫
Ω

1
ε
W
(∇vMε )+ ε

∣∣∇2vMε
∣∣2 dx = K∗HN−1

(
S
(∇vM) ∩ Ω

) ≤ K∗
M∑
i=1

HN−1 (ωi × {li}) .

In turn

lim sup
M→∞

lim
ε→0+

∫
Ω

1
ε
W
(∇vMε )+ ε

∣∣∇2vMε
∣∣2 dx ≤ K∗

∞∑
i=1

HN−1 (ωi × {li})

= K∗HN−1 (S (∇u) ∩ Ω) .

Since vMε → vM in W 1,2
(
Ω; Rd

)
as ε → 0+, by means of a standard diagonalization process it suffices to

prove that vM → u in L1
(
Ω; Rd

)
as M → ∞. By construction we have∫

Ω

∣∣∇vM −∇u∣∣ dx ≤
∫

S∞
i=M+1 Ω\Ei

∣∣∇vM −∇u∣∣ dx
≤ 2 |a⊗ eN |

∣∣∣∣∣
∞⋃

i=M+1

Ω\Ei
∣∣∣∣∣ ≤ C

∞∑
i=M+1

|Ω\Ei|

≤ C
∞∑

i=M+1

|Ω\Ei|1−
1
N ≤ C

∞∑
i=M+1

HN−1 (ωi × {li}) ≤ Cδ,

and by Poincaré’s inequality and (5.58) we obtain∫
Ω

∣∣vM − u
∣∣ dx ≤ C̃

∫
Ω

∣∣∇vM −∇u∣∣ dx ≤ C̃δ,

where the Poincaré constant C̃ may be taken independently of δ in view of (5.57). It now suffices to let
δ → 0+.

6 Γ−limsup: the upper bound. The symmetry hypotheses.

We introduce the notation

ξ = (ξ1, · · · , ξN ) ∈ Rd × · · · × Rd︸ ︷︷ ︸
N times

, ξ′ = (ξ1, · · · , ξN − 1) ∈ Rd × · · · × Rd︸ ︷︷ ︸
N−1 times

,

so that ξ = (ξ′, ξN ) ∈ Rd×(N−1) × Rd. Throughout this section we assume that

(H1) W is continuous, W (ξ) = 0 if and only if ξ ∈ {A,B} , where A = −B = a⊗eN , for some a ∈ Rd \ {0} ;

(H2)′′ there exist an exponent p ≥ 2 and a constant C > 1 such that

1
C

|ξ|p − C ≤W (ξ) ≤ C (|ξ|p + 1)

for all ξ ∈ Rd×N ;
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(H4) there exist constants ρ, γ > 0 such that

1
γ
|ξ −A|p ≤W (ξ) ≤ γ |ξ −A|p if |ξ −A| ≤ ρ,

1
γ
|ξ −B|p ≤W (ξ) ≤ γ |ξ −B|p if |ξ −B| ≤ ρ.

(H5) W is even in each variable ξi, i = 1, · · · , N−1, that isW (ξ1, · · · ,−ξi, · · · , ξN ) = W (ξ1, · · · , ξi, · · · , ξN )
for each i = 1, · · · , N − 1.

Hypothesis (H4) may be improved as

(H4)
′ there exist a constant ρ > 0 and a convex function g : [0,∞) → [0,∞), with g (s) = 0 if and only if
s = 0, such that g is derivable in s = 0,

g (2t) ≤ cg (t) , (6.1)

for all 0 ≤ t ≤ ρ,
g (|ξ −A|) ≤W (ξ) ≤ cg (|ξ −A|) if |ξ −A| ≤ ρ,

and
g (|ξ −B|) ≤W (ξ) ≤ cg (|ξ −B|) if |ξ −B| ≤ ρ,

for some constant c > 0.

Condition (6.1) is called the doubling condition – it prevents g to be too degenerate near t = 0, precisely,
it is satisfied if g (t) ∼const. tp as t → 0+, for some p ≥ 1, while it does not hold if g grows exponentially
near the origin, i.e., g (t) ∼const. e−1/t2 as t→ 0+.

Remark 6.1 In what follows, and without loss of generality, we will consider the model case where A =
−B = a⊗ eN . It is easy to check that (H2)′′ and (H4) yield

W (ξ) ≥ C1|ξ′|p

for all ξ ∈ Rd×N and for some constant C1 > 0. Moreover, we claim that

W (ξ) ≤ C2 (W (η) + |ξ − η|p) , (6.2)

for all ξ, η ∈ Rd×N , and for some constant C2 > 0. Indeed, assume by contradiction that (6.2) does not hold.
Then there exist two sequences {ξn} , {ηn} ⊂ Rd×N such that

W (ξn) > n (W (ηn) + |ξn − ηn|p) . (6.3)

We have by (H2)′′

C (|ξn|p + 1) ≥W (ξn) > n (W (ηn) + |ξn − ηn|p) ≥ n

(
1
C

|ηn|p − C +
1
C

|ξn − ηn|p
)

≥ n

(
1

2p−1C
|ξn|p − C

)
,

where we have used the inequality |a|p + |b|p ≥ 1
2p−1 |a− b|p . This clearly implies that the sequence {ξn} is

bounded, and by (6.3) it follows that W (ηn)+ |ξn − ηn|p → 0. In view of (H1) we may assume, without loss
of generality, that ηn → A. For n sufficiently large the quantities |ξn −A| , |ηn −A| are so small that (H2)
may be applied, and (6.3) yields

γ |ξn −A|p ≥W (ξn) > n (W (ηn) + |ξn − ηn|p)

≥ n

(
1
γ
|ηn −A|p + |ξn − ηn|p

)

≥ 1
2p−1

nmin
{

1,
1
γ

}
|ξn −A|p ,

which is clearly a contradiction for n large.
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For simplicity we will present the proof of the analog of the results of Section 5 first under hypothesis
(H4), and then on Section 7 we move on to the general case where (H4)

′ holds.

6.1 Characterization of K∗

In this subsection we prove that under conditions (H1) , (H2)
′′
, (H4) and (H5)

K∗ = inf
{∫

Q

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx : L > 0, v ∈ W 2,∞ (Q; Rd

)
,

∇v = ±a⊗ eN nearby xN = ±1
2
, v periodic of period one in x′

}
.

The next two propositions will establish that, for cubes, realizing sequences may be taken periodic in the
transversal directions, and that there is a matching of vertical boundary conditions, precisely:

Proposition 6.2 (Vertical matching) Assume that W satisfies (H1) , (H2)
′′

and (H4) . Then there exist
sequences {εn} ⊂ R+, {cn} ⊂ R and {zn} ⊂ W 2,2

(
Q; Rd

)
, such that εn → 0+, cn → 0, zn → |xN | a in

W 1,p
(
Q; Rd

)
,

zn (x) = −xN a nearby xN = −1
2
, zn (x) = xN a+ cn nearby xN =

1
2
, (6.4)

and
lim

n→+∞

∫
Q

1
εn
W (∇zn) + εn

∣∣∇2zn
∣∣2 dx = K∗.

Proof. By definition of K∗ there exist sequences {εn} ⊂ R+, {un} ⊂W 2,2
(
Q; Rd

)
, such that εn → 0+,

un → u0 := |xN | a in L1
(
Q; Rd

)
and

lim
n→+∞

∫
Q

1
εn
W (∇un) + εn

∣∣∇2un
∣∣2 dx = K∗.

We abbreviate ε := εn and uε := un. Due to Theorem 3.1 and Remark 3.2 (ii), we may assume, up to
extraction of a subsequence, that uε → u in W 1,p

(
Q; Rd

)
. Partition Q′ × ( 1

6 ,
1
3

)
into

[
1
ε

]
horizontal layers

of height
[
1
ε

]−1 1
6 . In view of Remark 4.4, choose one such layer, Lε = Q′ ×

(
θε −

[
1
ε

]−1 1
6 , θε

)
, such that[

1
ε

]∫
Lε

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 + |∇uε − a⊗ eN |p + |uε − u0|p dx (6.5)

≤
∫
Q′×( 1

6 ,
1
3 )

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 + |∇uε − a⊗ eN |p + |uε − u0|p dx =: αε → 0.

In Lε select a height zε ∈
(
θε −

[
1
ε

]−1 1
6 , θε

)
such that∫

Q′

1
ε
W (∇uε (x′, zε)) + ε

∣∣∇2uε (x′, zε)
∣∣2 + |∇uε (x′, zε) − a⊗ eN |p (6.6)

+ |uε (x′, zε) − u0 (x′, zε)|p dx′ ≤ 6αε.

First matching: Set

vε (x) := u0 (x) + ūε (x) + ϕε (xN ) (uε (x) − u0 (x) − ūε (x)) ,

where ūε (x) := uε (x′, zε) − ũ (zε), u0(x) =: ũ(xN ), and let ϕε be a smooth cut-off function such that
{0 < ϕε < 1} ⊂ Lε, ϕε = 1 if xN < θε −

[
1
ε

]−1 1
6 , ϕε = 0 if xN > θε, and

‖ϕ′
ε‖∞ ≤ c

ε
, ‖ϕ′′

ε‖∞ ≤ c

ε2
.

We claim that
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(i)
∫
Lε

|vε − u0|p dx→ 0;

(ii) 1
ε

∫
Lε

|∇vε − a⊗ eN |p dx→ 0;

(iii)
∫
Lε

1
εW (∇vε) dx→ 0;

(iv)
∫
Lε
ε
∣∣∇2vε

∣∣2 dx→ 0.

It is easy to deduce (i) from (6.5) and (6.6). Now

1
ε

∫
Lε

|∇vε − a⊗ eN |p dx ≤ C

∫
Lε

1
ε
|∇x′uε (x′, zε)|p +

1
ε
|∇uε − a⊗ eN |p +

1
εp+1

|uε − u0 − ūε|p dx (6.7)

≤ C

{∫
Q′

|∇x′uε (x′, zε)|p dx′ +
1
ε

∫
Lε

|∇uε − a⊗ eN |p dx
}

≤ C

{∫
Q′

|∇uε (x′, zε) − a⊗ eN |p dx′ +
1
ε

∫
Lε

|∇uε − a⊗ eN |p dx
}

→ 0

by (6.5) and (6.6), where we have invoked the Poincaré’s inequality∫
Lε

|uε − u0 − ūε|p dx ≤ Cεp
∫
Lε

|∇ (uε − a⊗ eN)|p dx (6.8)

due to the fact that (uε − u0 − ūε) (x′, zε) ≡ 0, and using the identity |ξ−∇u0|p =
(|ξ′|2 + |ξN ± a|2)p/2. In

addition,

1
ε

∫
Lε

W (∇vε) dx ≤ 1
ε

∫
Lε∩{|∇vε−∇u0|<ρ}

C |∇vε − a⊗ eN |p dx+
1
ε

∫
Lε∩{|∇vε−∇u0|≥ρ}

C (1 + |∇vε|p) dx

≤ C

ε

∫
Lε

|∇vε − a⊗ eN |p dx,

where we have used (H2)
′′
, (H4), and the fact that

LN (Lε ∩ {|∇vε − a⊗ eN | ≥ ρ}) ≤ 1
ρp

∫
Lε

|∇vε − a⊗ eN |p dx.

By (ii) we easily deduce (iii).
Finally,∫
Lε

ε
∣∣∇2vε

∣∣2 dx ≤C
∫
Lε

ε
∣∣∇2

x′uε (x′, zε)
∣∣2 + ε

∣∣∇2uε
∣∣2 +

1
ε
|∇uε − a⊗ eN |2

+
1
ε
|∇x′uε (x′, zε)|2 +

1
ε3

|uε − u0 − ūε|2 dx

≤C
{
ε2
∫
Q′

∣∣∇2
x′uε (x′, zε)

∣∣2 dx′ + ε

∫
Lε

∣∣∇2uε
∣∣2 dx +

∫
Lε

1
ε
|∇uε − a⊗ eN |2 dx

+
∫
Q′

|∇x′uε (x′, zε)|2 dx′ +
1
ε3
ε(p−2)/p

(∫
Lε

|uε − u0 − ūε|p dx
)2/p

}

≤C
{
ε2
∫
Q′

∣∣∇2
x′uε (x′, zε)

∣∣2 dx′ + ε

∫
Lε

∣∣∇2uε
∣∣2 dx+

(
1
ε

∫
Lε

|∇uε − a⊗ eN |p dx
)2/p

+
(∫

Q′
|∇uε (x′, zε) − a⊗ eN |p dx′

)2/p

dx′
}

→ 0

by (6.5), (6.6), Hölder’s inequality, and (6.7), (6.8).
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Second matching: Set
wε (x) := u0 + cε + ψ (xN ) (ūε − cε) ,

where, by (6.6),

cε :=
∫
Q′
ūε (x′, zε) dx′ → 0,

and ψ is a smooth cut-off function such that ψ = 1 nearby xN = θε
(
< 1

3

)
, ψ = 0 nearby xN = 1

2 , and

‖ψ′‖∞ ≤ c, ‖ψ′′‖∞ ≤ c.

We claim that

(i)
∫
Q′×(θε,

1
2 ) |wε − u0|p dx→ 0;

(ii)
∫
Q′×(θε,

1
2 )

1
εW (∇wε) dx→ 0 or, as seen before, 1

ε

∫
Q′×(θε,

1
2 ) |∇wε − a⊗ eN |p dx→ 0;

(iii)
∫
Q′×(θε,

1
2 ) ε
∣∣∇2wε

∣∣2 dx→ 0.

It is clear that (i) is a consequence of (6.6). To prove (ii) and (iii) we notice that

1
ε

∫
Q′×(θε,

1
2 )

|∇wε − a⊗ eN |p dx ≤ C
1
ε

∫
Q′×(θε,

1
2 )

|∇x′uε (x′, zε)|p + |ūε − cε|p dx

≤ C
1
ε

∫
Q′

|∇x′uε (x′, zε)|p dx′

≤ C

∫
Q′

1
ε
W (∇uε (x′, zε)) dx′ → 0

by (6.6), and where we have used Poincaré-Friedrichs’s inequality and Remark 6.1. Furthermore, also by
(6.6), and using Hölder’s inequality∫

Q′×(θε,
1
2 )
ε
∣∣∇2wε

∣∣2 dx ≤ C

∫
Q′×(θε,

1
2 )
ε
∣∣∇2

x′ ūε (x′, zε)
∣∣2 + ε |∇x′uε (x′, zε)|2 dx

≤ Cε

{∫
Q′

∣∣∇2
x′uε (x′, zε)

∣∣2 dx′ +
(∫

Q′
|∇uε (x′, zε) − a⊗ eN |p dx′

)2/p
}

→ 0.

To conclude the proof, note that the sequence

Uε :=

⎧⎪⎨
⎪⎩

uε if xN < θε −
[

1
ε

]−1 1
6 ,

vε if θε −
[

1
ε

]−1 1
6 ≤ xN ≤ θε,

wε if xN > θε,

satisfies condition (6.4) with

lim sup
ε→0+

∫
Q

1
ε
W (∇Uε) + ε

∣∣∇2Uε
∣∣2 dx ≤ lim

ε→0+

∫
Q

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 dx = K∗.

This procedure pins down the boundary conditions at xN = 0, and nearby xN = 1
2 we have Uε = u0 + cε.

Now we repeat the argument in Q′ × (− 1
2 , 0
)

with the obvious adaptations, in order to change Uε on the
bottom half of the cylinder so that the new field Vε is equal to u0 + c+ε on top and to u0 + c−ε on bottom. It
suffices to set zε := Vε − Cε, with Cε := c+ε − c−ε and to invoke Theorem 4.1.

Proposition 6.3 (Transversal Periodicity) Assume that W satisfies conditions (H1) , (H2)
′′
, (H4) and

(H5) . Then there exist sequences {εn} ⊂ R+, {un} ⊂ W 2,∞ (Q; Rd
)
, such that εn → 0+, un → |xN | a in

L1
(
Q; Rd

)
, ∇un = ±a⊗ eN nearby xN = ± 1

2 (resp.), un is periodic of period one in x′, and

lim inf
n→+∞

∫
Q

1
εn
W (∇un) + εn

∣∣∇2un
∣∣2 dx = K∗.
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Proof. We claim that we may find sequences {εn} ⊂ R+, {vn} ⊂ W 2,∞
loc

(
RN ; Rd

)
, such that εn → 0+,

vn (·, xN ) is 2Q′-periodic for all xN ∈ R, ∇vn = ±a⊗ eN nearby xN = ± 1
2 (resp.), and

lim
n→∞

∫
2Q′×(− 1

2 ,
1
2 )

1
εn
W (∇vn) + εn

∣∣∇2vn
∣∣2 dx = 2N−1K∗,

lim
n→∞

∫
2Q′×(− 1

2 ,
1
2 )

|vn(x) − |xN |a| dx = 0.

If the claim holds, then extend vn linearly to 2Q and define un (x) := 1
2vn (2x) for x ∈ 2Q. Then {un} ⊂

W 2,∞
loc

(
RN ; Rd

)
, un (·, xN ) is Q′-periodic for all xN ∈ R, ∇un = ±a⊗ eN nearby xN = ± 1

2 (resp.), and

lim
n→∞

∫
Q

2
εn
W (∇un) +

εn
2

∣∣∇2un
∣∣2 dx = K∗,

lim
n→∞

∫
Q

|un(x) − |xN |a|dx = 0,

thus completing the proof.
We divide the proof of the claim in two steps, where, as before, for simplicity of notation we write ε := εn.

Step 1: The two dimensional case N = 2. In view of Lemma 4.2, consider sequences {ε} ⊂ R+, {uε} ⊂
W 2,2

(
Q; Rd

)
, such that ε→ 0+, uε → u0 := |x2|a in L1

(
Q; Rd

)
, and

lim
ε→0+

∫
Q

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 dx = K∗.

By (H2)
′′

we may assume, without loss of generality, that {uε} ⊂ W 2,2
(
Q; Rd

) ∩ C2
(
Q; Rd

)
, and by

Proposition 6.2 that ∇uε (x) = ± a⊗ eN nearby x2 = ± 1
2 (resp.). By Theorem 4.1 we have

K∗ = lim
ε→0+

∫
Q

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 dx ≥ lim inf

ε→0+

∫
Q\Im

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 dx

≥ K∗H1

((
−1

2
+

1
m
,
1
2
− 1
m

)
× {0}

)
= K∗

(
1 − 2

m

)
,

where Im :=
((− 1

2 ,− 1
2 + 1

m

) ∪ ( 1
2 − 1

m ,
1
2

))× (− 1
2 ,

1
2

)
, and so

lim sup
ε→0+

∫
Im

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 dx ≤ K∗ 2

m
.

Divide
(− 1

2 ,− 1
2 + 1

m

)×(− 1
2 ,

1
2

)
into

[
1
ε

]
vertical strips of horizontal width 1

m

[
1
ε

]−1
, and proceed symmetri-

cally in
(

1
2 − 1

m ,
1
2

)×(− 1
2 ,

1
2

)
.Order these strips in pairs

(
R−
ε,m,i, R

+
ε,m,i

)
with R+

ε,m,i ⊂
(

1
2 − 1

m ,
1
2

)×(− 1
2 ,

1
2

)
,

R−
ε,m,i ⊂

(− 1
2 ,− 1

2 + 1
m

)× (− 1
2 ,

1
2

)
. Then for all ε > 0 sufficiently small we have

[ 1
ε ]∑
i=1

∫
R+

ε,m,i∪R−
ε,m,i

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 +mp |∇uε −∇u0|p + |uε − u0| dx ≤ K∗ 3

m
, (6.9)

where we have used the fact that uε → u0 in W 1,p
(
Q; Rd

)
(see Theorem 3.1 and Remark 3.2 (ii)). Choose

one pair
(
R−
ε,m,i, R

+
ε,m,i

)
, with i = i (ε,m) , such that

∫
R+

ε,m,i∪R−
ε,m,i

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 +mp |∇uε −∇u0|p + |uε − u0| dx ≤ K∗ 3

m

[
1
ε

]−1

. (6.10)

For simplicity, from now on we denote R+
ε,m,i =: R+

ε,m = (bε,m, cε,m) × (− 1
2 ,

1
2

)
and R−

ε,m,i =: R−
ε,m =
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(−cε,m,−bε,m) × (− 1
2 ,

1
2

)
. Since

∫ cε,m

bε,m+cε,m
2

∫ 1
2

− 1
2

[
1
ε
W (∇uε (x)) + ε

∣∣∇2uε (x)
∣∣2 +mp |∇ (uε − u0)|p (x) + |(uε − u0) (x)|

+
1
ε
W (∇uε (−x1, x2)) + ε

∣∣∇2uε (−x1, x2)
∣∣2 +mp |∇ (uε − u0) (−x1, x2)|p

+ |(uε − u0) (−x1, x2)|
]
dx ≤ K∗ 3

m

[
1
ε

]−1

,

with cε,m − bε,m+cε,m

2 = 1
2

1
m

[
1
ε

]−1
, there exists aε,m ∈

(
bε,m+cε,m

2 , cε,m

)
such that

∫ 1
2

− 1
2

[
1
ε
W (∇uε (aε,m, x2)) + ε

∣∣∇2uε (aε,m, x2)
∣∣2 + |(uε − u0) (aε,m, x2)| (6.11)

+mp |∇ (uε − u0) (aε,m, x2)|p +mp |∇ (uε − u0) (−aε,m, x2)|p

+
1
ε
W (∇uε (−aε,m, x2)) + ε

∣∣∇2uε (−aε,m, x2)
∣∣2 + |(uε − u0) (−aε,m, x2)|

]
dx2 ≤ 6K∗.

Now
(−aε,m,−aε,m + ε

2m

) ⊂ (−cε,m,−bε,m) because aε,m ∈
(
bε,m+cε,m

2 , cε,m

)
and bε,m+cε,m

2 − bε,m =
1
2

1
m

[
1
ε

]−1
. We will now modify uε on (−aε,m,−bε,m) × (− 1

2 ,
1
2

)
so that the new sequence will match uε

near x1 = −aε,m + ε
2m , hence near −bε,m, and will coincide with uε (−aε,m, ·) near x1 = −aε,m. Let ϕε,m be

a smooth cut-off function such that ϕε,m = 1 if x1 > −aε,m + ε
2m , ϕε,m = 0 if x1 < −aε,m, and

∥∥ϕ′
ε,m

∥∥
∞ ≤ cm

ε
,
∥∥ϕ′′

ε,m

∥∥
∞ ≤ cm2

ε2
.

Define
wε,m (x) := ϕε,m (x1)uε (x) + (1 − ϕε,m (x1))uε (−aε,m, x2) .

Then {wε,m} ⊂W 2,∞ (Q; Rd
)
, and ∇wε,m (x) = ± a⊗ eN nearby x2 = ± 1

2 (resp.). We show that

lim sup
m→∞

lim sup
ε→0+

∫
Q

1
ε
W (∇wε,m) + ε

∣∣∇2wε,m
∣∣2 dx ≤ K∗, lim sup

m→∞
lim sup
ε→0+

∫
Q

|wε,m − u0| dx = 0. (6.12)

If (6.12) holds, and repeating the argument now nearby x1 = aε,m, then after a diagonalization procedure
and invoking Theorem 4.1, we can find a subsequence εm → 0+ and a sequence {wm} ⊂W 2,∞ (Q; Rd

)
such

that wm = wm (±am, x2) nearby x1 = ± 1
2 resp, ∇wm (x) = ± a⊗ eN nearby x2 = ± 1

2 (resp.), and

lim
m→∞

∫
Q

1
εm

W (∇wm) + εm
∣∣∇2wm

∣∣2 dx = K∗, lim
m→∞

∫
Q

|wm − u0| dx = 0.

Construct by reflection about x1 = 1
2 a new function, still denoted wm, x1-periodic with period 2. Precisely,

for x1 ∈ ( 1
2 ,

3
2

)
, x2 ∈ (− 1

2 ,
1
2

)
, set wm(x1, x2) := wm(1 − x1, x2). Since the problem is translation invariant,

for simplicity of notation in what follows we identify w with its translation (x1, x2) 
→ w(x1 − 1/2, x2), and
in this way we work with periodic functions with period (−1, 1)× (− 1

2 ,
1
2

)
, such that

lim
m→∞

∫
(−1,1)×(− 1

2 ,
1
2 )

1
εm

W (∇wm) + εm
∣∣∇2wm

∣∣2 dx = 2K∗, lim
m→∞

∫
(−1,1)×(− 1

2 ,
1
2 )

|wm − u0| dx = 0.

Note that here we have used condition (H5), and note also that the new function wm extended to R×(− 1
2 ,

1
2

)
is still in W 2,∞

loc

(
R × (− 1

2 ,
1
2

)
; Rd
)

because wm does not depend on x1 nearby the axis of reflection x1 = 1
2 .
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The remainder of Step 1 is devoted to the proof of (6.12), where we use the notation I−m := (−1/2,−bm)×
(−1/2, 1/2). We have∫
Q

1
ε
W (∇wε,m) + ε

∣∣∇2wε,m
∣∣2 dx =

∫
Q\I−m

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 dx +

∫
R−

ε,m

1
ε
W (∇wε,m) + ε

∣∣∇2wε,m
∣∣2 dx

+
∫
I−m\R−

ε,m

1
ε
W

(
0,
∂uε
∂x2

(−aε,m, x2)
)

+ ε

∣∣∣∣∂2uε
∂x2

2

(−aε,m, x2)
∣∣∣∣2 dx

≤
∫
Q

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 dx+

∫
R−

ε,m

1
ε
W (∇wε,m) + ε

∣∣∇2wε,m
∣∣2 dx

+
1
m

∫ 1
2

− 1
2

1
ε
W

(
0,
∂uε
∂x2

(−aε,m, x2)
)

+ ε

∣∣∣∣∂2uε
∂x2

2

(−aε,m, x2)
∣∣∣∣2 dx.

By Remark 6.1 we have

W

(
0,
∂uε
∂x2

(−aε,m, x2)
)

≤ CW (∇uε (−aε,m, x2)) + C

∣∣∣∣∂uε∂x1
(−aε,m, x2)

∣∣∣∣p ≤ CW (∇uε (−aε,m, x2)) , (6.13)

hence, by (6.11)

1
m

∫ 1
2

− 1
2

1
ε
W

(
0,
∂uε
∂x2

(−aε,m, x2)
)

+ ε

∣∣∣∣∂2uε
∂x2

2

(−aε,m, x2)
∣∣∣∣2 dx

≤ C

m

∫ 1
2

− 1
2

1
ε
W (∇uε (−aε,m, x2)) + ε

∣∣∣∣∂2uε
∂x2

2

(−aε,m, x2)
∣∣∣∣2 dx ≤ C

m
,

and, in turn, ∫
Q

1
ε
W (∇wε,m) + ε

∣∣∇2wε,m
∣∣2 dx ≤

∫
Q

1
ε
W (∇uε) + ε

∣∣∇2uε
∣∣2 dx (6.14)

+
∫
R−

ε,m

1
ε
W (∇wε,m) + ε

∣∣∇2wε,m
∣∣2 dx+

C

m
.

Similarly, again by (6.11),∫
Q

|wε,m − u0| dx ≤
∫
Q\I−m

|uε − u0| dx+
∫
R−

ε,m

|wε,m − u0| dx

+
1
m

∫ 1
2

− 1
2

|uε (−aε,m, x2) − |x2| a| dx

≤
∫
Q\I−m

|uε − u0| dx+
∫
R−

ε,m

|wε,m − u0| dx+
C

m
,

and thus, also by (6.14), to prove (6.12) it is sufficient to show that:

(i) lim
m→∞ lim

ε→0+

∫
R−

ε,m

1
εW (∇wε,m) dx = 0;

(ii) lim
m→∞ lim

ε→0+

∫
R−

ε,m
ε
∣∣∇2wε,m

∣∣2 dx = 0;

(iii) lim
m→∞ lim

ε→0+

∫
R−

ε,m
|wε,m − uε|dx = 0.

Now

∇wε,m (x) = ϕε,m (x1)∇uε (x) + (1 − ϕε,m (x1))
(

0
∣∣∣∣∂uε∂x2

(−aε,m, x2)
)

(6.15)

+ (uε (x1, x2) − uε (−aε,m, x2)) ⊗ ϕ′
ε,m (x1) e1.
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By (H2)′′ we have

W (ξ) ≤ C (1 + |ξ|p) ≤ C
(
1 + 2p−1 |∇u0|p + 2p−1 |ξ −∇u0|p

)
,

and so, using (6.15),

1
ε

∫
R−

ε,m

W (∇wε,m) dx ≤ C
1
ε

∫
R−

ε,m

(1 + |∇u0|p + |∇wε,m −∇u0|p) dx

≤C 1
εm

[
1
ε

]−1

(1 + |a⊗ e2|p)

+ C
1
ε

∫
R−

ε,m

|∇uε −∇u0|p +
∣∣∣∣∇u0 −

(
0,
∂uε
∂x2

(−aε,m, x2)
)∣∣∣∣p dx

+ C
1
ε

∫
R−

ε,m

(m
ε

)p
|uε (x) − uε (−aε,m, x2)|p dx

≤C
(

1
m

+
1
ε

∫
R−

ε,m

|∇uε −∇u0|p dx +
1
m

[
1
ε

]−1 1
ε

∫ 1
2

− 1
2

|∇ (u0 − uε) (−aε,m, x2)|p dx2

)

+ C
mp

εp+1

∫
R−

ε,m

|uε (x) − uε (−aε,m, x2)|p dx

≤C
(

1
m

+
1
ε

3K∗

mp+1

[
1
ε

]−1

+
6K∗

mp+1

[
1
ε

]−1 1
ε

+
mp

εp+1

∫
R−

ε,m

|uε (x) − uε (−aε,m, x2)|p dx
)
,

where we have used (6.9), (6.10), (6.11). Thus to prove (i) it remains to show that

lim
m→∞ lim

ε→0+

mp

εp+1

∫
R−

ε,m

|uε (x) − uε (−aε,m, x2)|p dx = 0.

Indeed, by Hölder’s inequality

|uε (x1, x2) − uε (−aε,m, x2)|p ≤
(∫ −cε,m

−bε,m

∣∣∣∣∂uε∂x1
(s, x2)

∣∣∣∣ ds
)p

≤ C
( ε
m

)p/p′ ∫ −cε,m

−bε,m

∣∣∣∣∂uε∂x1
(s, x2)

∣∣∣∣p ds
≤ C

( ε
m

)p−1
∫ −cε,m

−bε,m

|∇ (uε − u0) (s, x2)|p ds,

and thus by (6.10)∫
R−

ε,m

|uε (x1, x2) − uε (−aε,m, x2)|p dx ≤ C

∫
R−

ε,m

( ε
m

)p−1
∫ −cε,m

−bε,m

|∇ (uε − u0) (s, x2)|p dsdx (6.16)

≤ C

[
1
ε

]−1
εp−1

mp

∫
R−

ε,m

|∇uε −∇u0|p dx ≤ C
εp+1

m2p+1

and the (6.12) holds.
To show (ii) note that for x1 ∈ (−bε,m,−cε,m)

∣∣∇2wε,m (x)
∣∣ ≤ ϕε,m (x1)

∣∣∇2uε (x)
∣∣+ (1 − ϕε,m (x1))

∣∣∣∣∂2uε
∂x2

2

(−aε,m, x2)
∣∣∣∣

+ |uε (x1, x2) − uε (−aε,m, x2)|
∣∣ϕ′′
ε,m (x1)

∣∣+ 2
∣∣ϕ′
ε,m (x1)

∣∣ ∣∣∣∣∇uε (x) −
(

0
∣∣∣∣∂uε∂x2

(−aε,m, x2)
)∣∣∣∣ ,

44



and so

∣∣∇2wε,m
∣∣2 ≤C

(∣∣∇2uε
∣∣2 +

∣∣∣∣∂2uε
∂x2

2

(−aε,m, x2)
∣∣∣∣2 (6.17)

+
(m
ε

)4

|uε − uε (−aε,m, x2)|2 +
(m
ε

)2
∣∣∣∣∇uε −

(
0
∣∣∣∣∂uε∂x2

(−aε,m, x2)
)∣∣∣∣2
)
.

We now estimate the two terms on the right hand side of (6.17). By (6.16) and Hölder’s inequality

∫
R−

ε,m

|uε (x1, x2) − uε (−aε,m, x2)|2 dx ≤ ∣∣R−
ε,m

∣∣(p−2)/p

(∫
R−

ε,m

|uε (x1, x2) − uε (−aε,m, x2)|p dx
)2/p

(6.18)

≤
(

1
m

[
1
ε

]−1
)(p−2)/p(

C
εp+1

m2p+1

)2/p

≤ C
ε3

m5
,

while ∣∣∣∣∇uε (x) −
(

0
∣∣∣∣∂uε∂x2

(−aε,m, x2)
)∣∣∣∣2 ≤ 2

∣∣∣∣∂uε∂x1
(x)
∣∣∣∣2 + 2

∣∣∣∣∂uε∂x2
(x) − ∂uε

∂x2
(−aε,m, x2)

∣∣∣∣2

≤ 2 |∇uε −∇u0|2 + 2

(∫ −bε,m

−cε,m

∣∣∣∣ ∂2uε
∂x2∂x1

(s, x2)
∣∣∣∣ ds
)2

≤ 2 |∇uε −∇u0|2 +
3ε
m

∫ −bε,m

−cε,m

∣∣∇2uε (s, x2)
∣∣2 ds.

Hence, by (6.10) and Hölder’s inequality,

∫
R−

ε,m

∣∣∣∣∇uε (x) −
(

0
∣∣∣∣∂uε∂x2

(−aε,m, x2)
)∣∣∣∣2 dx ≤2

∫
R−

ε,m

|∇uε −∇u0|2 dx (6.19)

+
3ε
m

∫
R−

ε,m

∫ −bε,m

−cε,m

∣∣∇2uε (s, x2)
∣∣2 dsdx

≤2
∣∣R−

ε,m

∣∣(p−2)/p

(∫
R−

ε,m

|∇uε −∇u0|p dx
)2/p

+
3
m2

[
1
ε

]−1

ε

∫
R−

ε,m

∣∣∇2uε
∣∣2 dx

≤C ε

m3
+ C

ε2

m3
.

By (6.17), (6.18) and (6.19) we conclude that

ε

∫
R−

ε,m

∣∣∇2wε,m
∣∣2 dx ≤ Cε

∫
R−

ε,m

∣∣∇2uε
∣∣2 dx + C

ε2

m

∫ 1
2

− 1
2

∣∣∇2uε (−aε,m, x2)
∣∣2 dx2

+ C
m2

ε

∫
R−

ε,m

∣∣∣∣∇uε −
(

0
∣∣∣∣∂uε∂x2

(−aε,m, x2)
)∣∣∣∣2 dx

+ C
m4

ε3

∫
R−

ε,m

|uε − uε (−aε,m, x2)|2 dx

≤ C

(
K∗ 3

m

[
1
ε

]−1

+ 6K∗ ε
m

+
1
m

+
ε

m
+

1
m

)
→ 0
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as ε→ 0+ and m→ ∞.
Finally, note that by (6.18)

∫
R−

ε,m

|wε,m − uε| dx ≤ C

(
ε

m

∫
R−

ε,m

|uε − uε (−aε,m, x2)|2 dx
)1/2

→ 0

as ε→ 0+.
Step 2: The N-dimensional case. Take sequences {εn} ⊂ R+, {un} ⊂ W 2,2

(
Q; Rd

)
, such that εn → 0+,

un → u0 := |xN | a in L1
(
Q; Rd

)
and

lim
ε→0+

∫
Q

1
εn
W (∇un) + εn

∣∣∇2un
∣∣2 dx = K∗.

By Step 1 there exist a subsequence {εm} ⊂ {εn} such that the corresponding fields um may be modified so
as to obtain a new sequence

{
w

(1)
m

}
⊂ W 2,∞

loc

(
R × (− 1

2 ,
1
2

)N−1 ; Rd
)
, x1-periodic with period 2, such that

∇w(1)
m (x) = ± a⊗ eN nearby xN = ± 1

2 (resp.) and

lim
m→∞

∫
(−1,1)×(− 1

2 ,
1
2 )

N−1

1
εm

W
(
∇w(1)

m

)
+ εm

∣∣∣∇2w(1)
m

∣∣∣2 dx = 2K∗,

lim
m→∞

∫
(−1,1)×(− 1

2 ,
1
2 )

N−1

∣∣∣w(1)
m − u0

∣∣∣ dx = 0.

We treat x2 just as above. Starting from the w(1)
m above we construct

w
(2)
k (x) := ϕk (x2)w(1)

mk
(x) + (1 − ϕk (x2))w(1)

mk
(x1, ± bk, x3, · · · , xN ) .

with bk → 1
2

−
, such that

lim
k→∞

∫
(−1,1)×(− 1

2 ,
1
2 )

N−1

1
εmk

W
(
∇w(2)

k

)
+ εmk

∣∣∣∇2w
(2)
k

∣∣∣2 dx = 2K∗,

lim
k→∞

∫
(−1,1)×(− 1

2 ,
1
2 )

N−1

∣∣∣w(2)
k − u0

∣∣∣ dx = 0.

Note that w(2)
k (x) is still periodic in x1 with period 2 and ∇w(2)

k (x) = ± a ⊗ eN nearby xN = ± 1
2 (resp.).

After reflection about x2 = 1
2 we obtain a sequence w(2)

k (x) periodic in x1 and in x2, of period 2, such that
∇w(2)

k (x) = ± a⊗ eN nearby xN = ± 1
2 (resp.), and

lim
k→∞

∫
(−1,1)×(−1,1)×(− 1

2 ,
1
2 )

N−2

1
εmk

W
(
∇w(2)

k

)
+ εmk

∣∣∣∇2w
(2)
k

∣∣∣2 dx = 4K∗,

lim
k→∞

∫
(−1,1)×(−1,1)×(− 1

2 ,
1
2 )

N−2

∣∣∣w(2)
k − u0

∣∣∣ dx = 0.

By repeating this process for all remaining variables x3, · · · , xN−1, we obtain sequences fulfilling the claim.

Define

Kper := inf
{∫

Q

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx : L > 0, v ∈ W 2,∞ (Q; Rd

)
,

∇v = ±a⊗ eN nearby xN = ±1
2
, v periodic of period one in x′

}
.
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Proposition 6.4 Assume that W satisfies conditions (H1) , (H2)
′′
, (H4) and (H5) . Then

K∗ = Kper.

Proof. By Proposition 6.3 K∗ ≥ Kper. To prove the opposite inequality, fix δ > 0 and let L > 0, v ∈
W 2,∞

loc

(
Q; Rd

)
, v (·, xN ) Q′-periodic for all xN ∈ R, such that ∇v = ±a⊗ eN nearby xN = ± 1

2 (resp.) and∫
Q

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx ≤ Kper + δ.

Let {εn} be a sequence converging to 0+, and writing ε := εn define

zε (x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εLv

(
x′

εL
, 1

2

)
+ a
(
xN − εL

2

)
if xN > εL

2 ,

εLv
( x
εL

)
if |xN | ≤ εL

2 ,

εLv

(
x′

εL
,− 1

2

)
− a
(
xN + εL

2

)
if xN < − εL

2 ,

(6.20)

so that

∇zε (x) =

⎧⎪⎨
⎪⎩

a⊗ eN if xN > εL
2 ,

∇v
( x
εL

)
if |xN | ≤ εL

2 ,

−a⊗ eN if xN < − εL
2 .

(6.21)

Then ∫
Q+

|∇zε −∇u0|p dx =
∫
Q′

∫ εL
2

0

∣∣∣∇v ( x
εL

)
− a⊗ eN

∣∣∣p dx′dxN
= εL

∫
Q′

∫ 1
2

− 1
2

∣∣∣∣∇v
(
x′

εL
, t

)
− a⊗ eN

∣∣∣∣p dx′dxN → 0

since v ∈ W 2,∞ (Q; Rd
)
, and where u0 := |xN |a, Q+ := Q′ × (0, 1

2

)
. A similar conclusion holds in Q− :=

Q′ × (− 1
2 , 0
)

and so ∇zε → ∇u0 in Lp
(
Q; Rd

)
. Moreover, by the Riemann-Lebesgue Lemma

∫
Q

1
ε
W (∇zε) + ε

∣∣∇2zε
∣∣2 dx =

∫ εL
2

− εL
2

∫
Q′

1
ε
W
(
∇v
( x
εL

))
+

1
εL2

∣∣∣∇2v
( x
εL

)∣∣∣2 dx′dxN
=
∫ 1

2

− 1
2

∫
Q′
LW

(
∇v
(
x′

εL
, t

))
+

1
L

∣∣∣∣∇2v

(
x′

εL
, t

)∣∣∣∣2 dx′dt →
∫
Q

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx,

and so
K∗ ≤

∫
Q

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx ≤ Kper + δ.

It now suffices to let δ → 0+.

Remark 6.5 If Ω = ω × (−h, h) , where ω ⊂ RN−1 is a bounded open set, and if we consider the sequence
defined in (6.20) , then we have by the Riemann-Lebesgue Lemma

∫
ω×(−h,h)

1
ε
W (∇zε) + ε

∣∣∇2zε
∣∣2 dx =

∫ εL
2

− εL
2

∫
ω

1
ε
W
(
∇v
( x
εL

))
+

1
εL2

∣∣∣∇2v
( x
εL

)∣∣∣2 dx′dxN
=
∫ 1

2

− 1
2

∫
ω

LW

(
∇v
(
x′

εL
, t

))
+

1
L

∣∣∣∣∇2v

(
x′

εL
, t

)∣∣∣∣2 dx′dt→ HN−1 (ω)
∫
Q

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx.

47



6.2 x′-connected domains

Theorem 6.6 Let Ω ⊂ RN be an open, bounded, simply connected domain with Lipschitz boundary. Assume
(5.14) and let W satisfy the conditions (H1) , (H2)

′′
, (H4) and (H5) . Let u ∈ W 1,1

(
Ω; Rd

)
, with ∇u ∈

BV (Ω; {A,B}) . Then
Γ − lim

ε→0+
Iε (u; Ω) = K∗ PerΩ(E),

where ∇u(x) = (1 − χE (x))A+ χE (x) B for LN a.e. x ∈ Ω.

Proof. The proof is very similar to that of Theorem 5.6.
Step 1: One interface. We assume first that u has the form

u (x) = |xN | a a.e. in Ω.

We proceed as in Step 1 of Theorem 5.6 and in place of the function g we consider a function v ∈ W 2,∞ (Q; Rd
)

admissible for Kper, and, consequently, we define

uε,δ (x) := ψδ (x) zε (x) + (1 − ψδ (x))u (x)

where zε is now defined as in (6.20). The estimate (5.18) should be replaced by

∫
{ψδ=1}

1
ε
W (∇zε) + ε

∣∣∇2zε
∣∣2 dx =

∫ 1
2

− 1
2

∫
ω+

δ

LW

(
∇v
(
x′

εL
, t

))
+

1
L

∣∣∣∣∇2v

(
x′

εL
, t

)∣∣∣∣2 dx′dt (6.22)

→ HN−1
(
ω+
δ

)(∫
Q

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx)

as ε→ 0+, by Remark 6.5. By (6.20) and (6.21) the bound (5.24) continues to hold, while (5.25) should be
replaced by

|∇ (zε − u)| ≤
∣∣∣∇v ( x

εL

)∣∣∣+ ‖∇u‖∞ ≤ C,
∣∣∇2zε

∣∣ ≤ 1
ε

∣∣∣∇v ( x
εL

)∣∣∣ ≤ C

ε
, (6.23)

for |xN | ≤ εL. We can continue essentially as before, using (6.22) in the right hand side of the new formula
corresponding to (5.28). We omit the details.
Steps 2 and 3: In the cases of finitely many and countably many interfaces we may proceed, respectively,
as in Steps 2 and 3 of Theorem 5.5. We omit the details.

6.3 General domains

In this section we remove the condition (5.14) .

Theorem 6.7 Assume that W satisfies the conditions (H1) , (H2)
′′
, (H4) and (H5) . Let u ∈ W 1,1

(
Ω; Rd

)
,

with ∇u ∈ BV (Ω; {A,B}) . Then

Γ − lim
ε→0+

Iε (u; Ω) = K∗ PerΩ(E),

where ∇u(x) = (1 − χE (x))A+ χE (x) B for LN a.e. x ∈ Ω.

Proof. The proof follows closely that of Subsection 5.4, with the only differences that in (5.34) of
Proposition 5.7 the function zε is now defined as in (6.20) and, in turn, the estimate (5.25) should be
replaced by (6.23).

7 Condition (H4)
′

In this section we weaken the condition (H4) on the bounds of W near the wells.

Theorem 7.1 All the results of the previous section continue to hold if condition (H4) is replaced by (H4)
′
.
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The next lemma ensures that the function g introduced in (H4)
′ to control the behavior of W near the

wells may be extended to a function G still satisfying the doubling condition, and such that G (|· −A|) and
G (|· −B|) may be compared with W in the whole Rd×N . As before, in what follows we are assuming without
loss of generality that A and B satisfy (2.1).

Lemma 7.2 Let g : [0,∞) → [0,∞) be a convex function, with g (s) = 0 if and only if s = 0, such that

g (2t) ≤ Cg (t) (7.1)

for all 0 ≤ t ≤ ρ,
g (|ξ −A|) ≤W (ξ) ≤ Cg (|ξ −A|) (7.2)

for all ξ ∈ Rd×N with |ξ −A| ≤ ρ, and

g (|ξ −B|) ≤W (ξ) ≤ Cg (|ξ −B|) (7.3)

for all ξ ∈ Rd×N with |ξ −B| ≤ ρ, for some constant C = C (ρ) > 0. Then there exists a convex function
G : [0,∞) → [0,∞) such that G (t) = g (t) for all t ∈ [0, ρ] ,

G (s+ t) ≤ C1 (G (s) +G (t)) (7.4)

for all s, t ≥ 0 and for some constant C1 > 0,

lim
t→∞

G (t)
tp

= 1, (7.5)

1
C2
G (|ξ′|) ≤ 1

C2
min {G (|ξ −A|) , G (|ξ −B|)} ≤W (ξ) ≤ C2 min {G (|ξ −A|) , G (|ξ −B|)} (7.6)

for all ξ ∈ Rd×N and for some constant C2 > 0,

W (ξ) ≤ C3 (W (η) +G (|ξ − η|)) (7.7)

for all ξ, η ∈ Rd×N and for some constant C3 > 0,

C4G (|ξ −A|) ≤W (ξ) (7.8)

for all ξ ∈ Rd×N such that |ξ −A| , |ξ −B| ≥ ρ and for some constant C4 > 0.

Proof. Let a > ρ be any Lebesgue point for g′ (recall that, since g is convex, g′ is a function of bounded
variation, precisely g′ ∈ BVloc ([0,∞))), and define

G (t) =
{
g (t) for 0 ≤ t ≤ a,
tp +

(
g′ (a) − pap−1

)
t+ g (a) − g′ (a) a+ (p− 1) ap for t > a.

(7.9)

We claim that G is convex. Assume first that g ∈ C2 ([0,∞)) . Then

G′ (t) =
{
g′ (t) for 0 ≤ t < a,
ptp−1 +

(
g′ (a) − pap−1

)
for t > a,

and

G
′′

(t) =
{
g′′ (t) for 0 ≤ t < a,
p (p− 1) tp−2 for t > a.

Hence G′ is continuous and nondecreasing, since G
′′

(t) ≥ 0 for all t �= a, and, as G is continuous, this implies
that G is convex. In the general case, consider gε := ηε ∗ g and let Gε be the corresponding convex functions
defined as in (7.9). Since gε → g pointwise and g′ε (t) → g′ (t) for every Lebesgue point t of g′, we obtain
that Gε → G pointwise, and thus G is convex. Condition (7.5) is now immediate. To prove (7.4) we first
show that

G (2t) ≤ C1G (t) (7.10)
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for all t ≥ 0 and for some constant C1 > 0. It t ≤ ρ this follows from (7.1). Let ρ1 > a be so large that

2tp > − (2p+1 − 2
)
(g′ (a) − 2a) t− (2p+1 − 1

)
(g (a) − g′ (a) a+ (p− 1) ap)

for all t ≥ ρ1. Then

G (2t) = 2ptp +
(
g′ (a) − pap−1

)
2t+ g (a) − g′ (a) a+ (p− 1) ap

= 2p+1G (t) − 2tp − (2p+1 − 2
)
(g′ (a) − 2a) t− (2p+1 − 1

)
(g (a) − g′ (a) a+ (p− 1) ap)

< 2p+1G (t)

for all t ≥ ρ1. Thus (7.10) holds for t ≤ ρ and t ≥ ρ1 taking as a constant max
{
C, 2p+1

}
. For t ∈ [ρ, ρ1] we

have

G (2t) ≤ max[2ρ,2ρ1]G

min[ρ,ρ1]G
G (t)

and thus (7.10) holds for all t ≥ 0 with

C1 := max
{
C, 2p+1,

max[2ρ,2ρ1]G

min[ρ,ρ1]G

}
.

To prove that (7.10) implies (7.4) is standard, note that by convexity and (7.10)

G (s+ t) = G

(
2 (s+ t)

2

)
≤ 1

2
(G (2s) +G (2t)) ≤ 1

2
C1 (G (s) +G (t)) .

By (7.2) and (7.3) condition (7.6) holds if either |ξ −A| ≤ ρ or |ξ −B| ≤ ρ. For k > 1 set Ek :={
ξ ∈ Rd×N : |ξ −A| , |ξ −B| ≥ ρ, |ξ| ≤ k

}
. For ξ ∈ Ek

minEk
W

maxEk
G (|· −A|) G (|ξ −A|) ≤W (ξ) ≤ maxEk

W

minEk
G (|· −A|) G (|ξ −A|) ,

and a similar inequality holds when the G (|ξ −A|) is replaced by G (|ξ −B|) . Thus it is sufficient to prove
(7.6) and (7.8) for |ξ| ≥ k where k > 1 remains to be chosen. This is an obvious consequence of (H2)′′ and
(7.5).

Remark 7.3 In light of Lemma 7.2, and in spite of the fact that the qualitative properties of g are only
given nearby zero, in the remaining of this section, and without loss of generality, we will assume that g
satisfies (7.4)-(7.6) and (7.7)-(7.8) with g in place of G.

The next result has been proved by Bhattacharya and Leonetti [12] in the case where Ω is convex and
S = Ω, and a generalized version for for open, bounded domains with the cone property may be found in
the Appendix.

Proposition 7.4 Let Ω ⊂ RN be an open bounded set, starshaped with respect to a set S ⊂ Ω, with |S| > 0.
Let g : [0,∞) → [0,∞) be a convex function, with g (0) = 0. Let u ∈ W 1,1

(
Ω; Rd

)
be such that g (|∇u|) ∈

L1 (Ω) . Then ∫
Ω

g

( |u (x) − uS|
d

)
dx ≤

(
αN d

N

|Ω|
)1− 1

N |Ω|
|S|
∫

Ω

g (|∇u|) dx,

where uS := 1
|S|
∫
S u dx, d is any number greater or equal than the diameter of Ω, and αN is the volume of

the unit ball in RN .

Proof of Theorem 7.1. Condition (H4) was used only in the proof of Propositions 6.2 and 6.3. Thus
it remains to show that these propositions continue to work under the weaker hypothesis (H4)′. We begin
with Proposition 6.2.
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Vertical matching– first matching: The proof of the first matching continues to work up to (6.8). By
(7.6) and since g is increasing

1
ε

∫
Lε

W (∇vε) dx ≤ 1
ε

∫
Lε

Cg (|∇vε − a⊗ eN |) dx (7.11)

≤ 1
ε

∫
Lε

g

(
C

(
|∇x′uε (x′, zε)| + |∇uε − a⊗ eN | + 1

ε
|uε − u0 − ūε|

))
dx

≤ C

ε

∫
Lε

g (|∇x′uε (x′, zε)|) + g (|∇uε − a⊗ eN |) + g

(
1
ε
|uε − u0 − ūε|

)
dx

where we have used (7.4). We now estimate the three terms on the right hand side of (7.11). By (7.6)

1
ε

∫
Lε

g (|∇x′uε (x′, zε)|) dx =
[
1
ε

]−1 1
6ε

∫
Q′
g (|∇x′uε (x′, zε)|) dx′ (7.12)

≤ C

∫
Q′
W (∇uε (x′, zε)) dx′ → 0

as ε→ 0+ by (6.6). If |∇uε − a⊗ eN | ≤ ρ or |∇uε − a⊗ eN | , |∇uε + a⊗ eN | ≥ ρ then by (7.8)

g (|∇uε − a⊗ eN |) ≤ CW (∇uε) ,
while if |∇uε − a⊗ eN | ≥ ρ and |∇uε + a⊗ eN | ≤ ρ then

g (|∇uε − a⊗ eN |) ≤ g (ρ+ 2 |a⊗ eN |) ≤ g (ρ+ 2 |a⊗ eN |) |∇uε − a⊗ eN |p
ρp

.

Hence
C

ε

∫
Lε

g (|∇uε − a⊗ eN |) dx ≤ C

ε

∫
Lε

W (∇uε) + |∇uε − a⊗ eN |p dx→ 0 (7.13)

as ε→ 0+ by (6.5). Finally, by Jensen’s inequality

C

ε

∫
Lε

g

(
1
ε
|uε − u0 − ūε|

)
dx ≤ C

ε

∫
Lε

g

(
1
ε

∫ θε

θε−[ 1
ε ]−1 1

6

|∇uε (x′, t) − a⊗ eN |dt
)
dx (7.14)

≤ C

ε

∫
Lε

1
ε

∫ θε

θε−[ 1
ε ]−1 1

6

g (|∇uε (x′, t) − a⊗ eN |) dtdx

=
C

ε

∫
Lε

g (|∇uε − a⊗ eN |) dx→ 0

as ε→ 0+ by (6.5). Thus, by (7.11)-(7.14) the claim (iii) holds as before.
Vertical matching–second matching: To prove (ii) in the second matching, note that by (7.6) and
since g is increasing,

1
ε

∫
Q′×(θε,

1
2 )
W (∇vε) dx ≤ 1

ε

∫
Q′×(θε,

1
2 )
Cg (|∇vε − a⊗ eN |) dx

≤ C

ε

∫
Q′×(θε,

1
2 )
g (|∇x′uε (x′, zε)|) + g (|ūε − cε|) dx

≤ C

ε

∫
Q′×(θε,

1
2 )
W (∇uε) + g (|ūε − cε|) dx,

where we have used (7.4). Thus by (6.5), it suffices to prove that

C

ε

∫
Q′×(θε,

1
2 )
g (|ūε − cε|) dx→ 0.
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By Proposition 7.4

C

ε

∫
Q′×(θε,

1
2 )
g (|ūε − cε|) dx =

C

ε

∫ 1
2

θε

∫
Q′
g

(∣∣∣∣ūε − 1
|Q′|

∫
Q′
ūε (x′, zε) dx′

∣∣∣∣
)
dx′dxN

≤ C

ε

∫ 1
2

θε

∫
Q′
g (|∇x′ ūε|) dx′dxN

≤ C

ε

∫
Q′
g (|∇x′uε (x′, zε)|) dx′

≤ C

ε

∫
Q′
W (∇uε (x′, zε)) dx′ → 0

as ε→ 0+ by (6.6), and where we have used (7.6).
It remains to ensure that Proposition 6.3 still holds.

Transversal periodicity: The proof of Proposition 6.3 continues to work. The only difference is on the
estimate (6.13) which continues to hold since, by (7.6) and the fact that g is increasing, we have

W

(
0,
∂uε
∂x2

(−aε,m, x2)
)

≤ C2 min
{
g

(∣∣∣∣∂uε∂x2
(−aε,m, x2) − a

∣∣∣∣
)
, g

(∣∣∣∣∂uε∂x2
(−aε,m, x2) + a

∣∣∣∣
)}

≤ C2 min {g (|∇uε (−aε,m, x2) − a⊗ e2|) , g (|∇uε (−aε,m, x2) + a⊗ e2|)}
≤ C2

2W (∇uε (−aε,m, x2)) ,

and we can now proceed as before.

8 Example of a non one-dimensional interface

In this section we show that when (H5) holds but (H3) fails, the asymptotic limiting problem may not have
a one dimensional character, namely,

Kper < K.

Consider the case where N = 2, d = 1, so that, with x = (x1, x2) , we have

Kper := inf
{∫

Q

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx1dx2 : L > 0, v ∈W 2,∞ (Q; R) ,

∇v = ±e2 nearby x2 = ±1
2
, v is periodic of period one in x1

}
.

In what follows we say that v ∈ W 2,∞
loc

((− 1
2 ,

1
2

)× R; R
)

is such that ∇v = ±e2 nearby x2 = ±∞ if there
exists a constant M > 0 such that ∇v = ±e2 for all x ∈ (− 1

2 ,
1
2

)×R (resp.) with x2 ≥M (resp. x2 ≤ −M).

Proposition 8.1

Kper = inf

{∫ ∞

−∞

∫ 1
2

− 1
2

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx1dx2 : L > 0, v ∈W 2,∞

loc

((
−1

2
,
1
2

)
× R; R

)
,

∇v = ±e2 nearby x2 = ±∞, v is periodic of period one in x1} =: K∞.

Proof. By linear continuation it is easy to see that K∞ ≤ Kper. To prove the converse inequality, fix
δ > 0 and let v ∈W 2,∞ ((− 1

2 ,
1
2

)× R; R
)

be an admissible function for K∞ such that, for some L > 0,

∫ ∞

−∞

∫ 1
2

− 1
2

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx1dx2 ≤ K∞ + δ.
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Since ∇v = ±e2 nearby x2 = ±∞ we may find a positive integer m such that

K∞ + δ ≥
∫ ∞

−∞

∫ 1
2

− 1
2

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx1dx2 =

∫ m+ 1
2

−m− 1
2

∫ 1
2

− 1
2

LW (∇v) +
1
L

∣∣∇2v
∣∣2 dx1dx2

and ∇v = ±e2 for ±x2 ≥ m. Due to the periodicity of v with respect to x1, we have

K∞ + δ ≥
∫ m+ 1

2

−m− 1
2

∫ 1
2

− 1
2

LW (∇v (x)) +
1
L

∣∣∇2v (x)
∣∣2 dx1dx2

=
∫ m+ 1

2

−m− 1
2

1
2m+ 1

m∑
k=−m

∫ 1
2

− 1
2

LW (∇v (x1 + k, x2)) +
1
L

∣∣∇2v (x1 + k, x2)
∣∣2 dx1dx2

=
∫ m+ 1

2

−m− 1
2

1
2m+ 1

m∑
k=−m

∫ k+ 1
2

k− 1
2

LW (∇v (x1, x2)) +
1
L

∣∣∇2v (x1, x2)
∣∣2 dx1dx2

=
1

2m+ 1

∫ m+ 1
2

−m− 1
2

∫ m+ 1
2

−m− 1
2

LW (∇v (x1, x2)) +
1
L

∣∣∇2v (x1, x2)
∣∣2 dx1dx2

=
1

2m+ 1

∫
(2m+1)Q

LW (∇v (x)) +
1
L

∣∣∇2v (x)
∣∣2 dx.

Via the change of variables x := (2m+ 1) y we have

K∞ + δ ≥ (2m+ 1)
∫
Q

LW (∇v ((2m+ 1) y)) +
1
L

∣∣∇2v ((2m+ 1) y)
∣∣2 dy

=
∫
Q

(2m+ 1)LW (∇z (y)) +
1

(2m+ 1)L

∣∣∇2z (y)
∣∣2 dy,

where we have set z (y) := 1
2m+1v ((2m+ 1) y) . Note that

z (y1 + 1, y2) =
1

2m+ 1
v ((2m+ 1) y1 + (2m+ 1) , (2m+ 1) y2)

=
1

2m+ 1
v ((2m+ 1) y1, (2m+ 1) y2)

= z (y1, y2) ,

since v periodic of period one in x1, and ∇z (y) = ±e2 if y2 is nearby ± 1
2 , resp. Hence z is admissible for

Kper, and so

K∞ + δ ≥ 1
2m+ 1

∫
(2m+1)Q

LW (∇v (x)) +
1
L

∣∣∇2v (x)
∣∣2 dx

= (2m+ 1)
∫
Q

LW (∇v ((2m+ 1) y)) +
1
L

∣∣∇2v ((2m+ 1) y)
∣∣2 dy

=
∫
Q

(2m+ 1)LW (∇z (y)) +
1

(2m+ 1)L

∣∣∇2z (y)
∣∣2 dy ≥ Kper.

It now suffices to let δ → 0+.
Next we exhibit an example of an energy density satisfying (H1) , (H2)

′′
, (H4)′ and (H5) for which

Kper < K. Define
W (ξ) = W (ξ1, ξ2) :=

(
1 − αξ21 − ξ22

)2
+ ξ21 ,

where α > 0. Then W (ξ) = 0 if and only if ξ ∈ {(0, 1) , (0,−1)} . By Lemma 3.5 in [23] we have that

K = inf
{∫ ∞

−∞
W (0, g (s)) + |g′ (s)|2 ds : g piecewise C1, g(−∞) = −1, g(∞) = 1

}
(8.1)

= inf
{∫ ∞

−∞

(
1 − g2 (s)

)2
+ |g′ (s)|2 ds : g piecewise C1, g(−∞) = −1, g(∞) = 1

}
.
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It is not difficult to see that K is realized by the unique solution of the boundary value problem{
g′′ + 2g − 2g3 = 0
g(−∞) = −1, g(∞) = 1,

which is given by g (s) := tanh s. Define ū (t) :=
∫ t
0
g (s) ds = ln cosh t.

Proposition 8.2 If α is sufficiently large then we have Kper < K.

Proof. Set
v (x) = v (x1, x2) := ū (x2) + λψ (x1, x2) ,

where ψ (x1, x2) := sin (2πx1) f (x2) and f is a smooth nonnegative function with compact support. With
L = 1 we have∫ ∞

−∞

∫ 1
2

− 1
2

W (∇v) +
∣∣∇2v

∣∣2 dx1dx2 =
∫ ∞

−∞

(
1 − g2 (s)

)2
+ |g′ (s)|2 ds

+ λ2

∫ ∞

−∞

∫ 1
2

− 1
2

[∣∣∇2ψ
∣∣2 + 2

(
3g2 (x2) − 1

)
sin2 (2πx1) (f ′ (x2))

2 + 4π2 cos2(2πx1)f2 (x2)

−8π2α
(
1 − g2 (x2)

)
cos2 (2πx1) f2 (x2)

]
dx1dx2

+ λ4

∫ ∞

−∞

∫ 1
2

− 1
2

[
sin2 (2πx1) (f ′ (x2))

2 + 4π2α cos2 (2πx1) f2 (x2)
]2
dx1dx2

=: I1 + λ2I2 (α) + λ4I3 (α) .

We now choose α > 0 so large that I2 (α) < 0, and then λ so small that λ2I2 (α) + λ4I3 (α) < 0. In view of
(8.1) ∫ ∞

−∞

∫ 1
2

− 1
2

W (∇v) +
∣∣∇2v

∣∣2 dx1dx2 <

∫ ∞

−∞

(
1 − g2 (s)

)2
+ |g′ (s)|2 ds = K.

Let {un} be a sequence of smooth functions converging to ū strongly in W 2,p
loc (R) for all p ≥ 1, and such

that u′n (x2) = ±e2 (resp.) for all x2 ≥ n (resp. x2 ≤ −n). Define

vn (x) := un (x2) + λψ (x1, x2) .

Then vn are admissible for K∞, and so

K∞ ≤ lim
n→∞

∫ ∞

−∞

∫ 1
2

− 1
2

W (∇vn) +
∣∣∇2vn

∣∣2 dx1dx2

=
∫ ∞

−∞

∫ 1
2

− 1
2

W (∇v) +
∣∣∇2v

∣∣2 dx1dx2 < K.

This, together with Proposition 8.1, concludes the proof.

9 Appendix

In the Appendix we generalize Poincaré’s inequality to Orlicz-Sobolev spaces (see Proposition 9.2). Although
it is probably known to experts, we have not been able to find it in the literature. The proof follows that of
Maz’ja [29] for the case g (s) = |s|p . A first version has been proved by Bhattacharya and Leonetti [12] in
the case where Ω is convex and S = Ω.

We recall that an open set Ω ⊂ RN is starshaped with respect to a set S ⊂ Ω if Ω is starshaped with
respect to each point of S, i.e. if x ∈ Ω and s ∈ S then θx+ (1 − θ) s ∈ Ω for all θ ∈ (0, 1) .
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Proposition 9.1 Let Ω ⊂ RN be an open bounded set, starshaped with respect to a set S ⊂ Ω, with |S| > 0.
Let g : [0,∞) → [0,∞) be a convex function, with g (0) = 0. Let u ∈ W 1,1

(
Ω; Rd

)
be such that g (|∇u|) ∈

L1 (Ω) . Then ∫
Ω

g

( |u (x) − uS|
d

)
dx ≤

(
αN d

N

|Ω|
)1− 1

N |Ω|
|S|
∫

Ω

g (|∇u|) dx,

where uS := 1
|S|
∫
S
u dx, d is any number greater or equal than the diameter of Ω, and αN is the volume of

the unit ball in RN .

Proof. We follow Lemma 7.16 in Gilbarg and Trudinger [24]. Assume first that u ∈ W 1,1
(
Ω; Rd

) ∩
C1
(
Ω; Rd

)
. Since Ω is starshaped with respect to S ⊂ Ω, for x ∈ Ω and y ∈ S we have

u (x) − u (y) = −
∫ |x−y|

0

Dru (x+ rω) dr, ω =
y − x

|y − x| .

Averaging with respect to y over S yields

u (x) − uS = − 1
|S|
∫
S

dy

∫ |x−y|

0

Dru (x+ rω) dr.

Since |x− y| ≤ d we have

|u (x) − uS|
d

≤ 1
|S|
∫
S

1
|x− y|

∫ |x−y|

0

|Dru (x+ rω)|drdy.

As g is convex, it now follows from applying twice Jensen’s inequality that

g

( |u (x) − uS |
d

)
≤ 1

|S|
∫
S

1
|x− y|

∫ |x−y|

0

g (|Dru (x+ rω)|) drdy.

Defining

V (x) =
{ |∇u (x)| x ∈ Ω,

0 x /∈ Ω,

and, as g is increasing, we have

g

( |u (x) − uS |
d

)
≤ 1

|S|
∫
{y:|x−y|<d}

1
|x− y|

∫ ∞

0

g (V (x+ rω)) drdy

=
1
|S|
∫ ∞

0

∫
|ω|=1

∫ d

0

g (V (x+ rω)) ρN−2dρdωdr

=
dN−1

(N − 1) |S|
∫ ∞

0

∫
|ω|=1

g (V (x+ rω)) dωdr

=
dN−1

(N − 1) |S|
∫

Ω

|x− y|1−N g (|∇u (y)|) dy,

where we have used the fact that g (0) = 0. The theory of Riesz potentials (Lemma 7.12 in Gilbarg and
Trudinger [24]) now yields∫

Ω

g

( |u (x) − uS |
d

)
dx ≤ 1

N
(αN )1−

1
N |Ω| 1

N
dN−1

(N − 1) |S|
∫

Ω

g (|∇u (x)|) dx

and the proof is complete.
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Proposition 9.2 Let Ω ⊂ RN be an open bounded domain having the cone property, let g : [0,∞) → [0,∞)
be a convex function satisfying the doubling condition, with g (0) = 0. Let u ∈ W 1,1

(
Ω; Rd

)
be such that

g (|∇u|) ∈ L1 (Ω) . Then ∫
Ω

g (|u (x) − uB|) dx ≤ C

∫
Ω

g (|∇u|) dx,

where
uB :=

1
|B|
∫
B

u (y) dy,

B is any fixed ball whose closure is contained in Ω, and C is a positive constant depending only on Ω and
on the ball B.

Proof. Since Ω has the cone property, it is the union of a finite number of domains starshaped with
respect to a ball. Let d be a number greater than the diameter of all these domains, and let A be any of these
subdomains with D being the corresponding ball. Construct a finite family of balls B0, · · · , BM contained
in Ω and such that B0 = D, Bi ∩ Bi+1 �= ∅, BM = B. Since A is starshaped with respect to any fixed ball
B̃ contained in B0 ∩B1, by Proposition 7.4 we obtain

∫
A

g

( |u (x) − uB̃|
d

)
dx ≤

(
αN d

N

|A|
)1− 1

N |A|∣∣∣B̃∣∣∣
∫
A

g (|∇u|) dx.

By Remark 7.3 and (7.4)

∫
A

g

( |u (x)|
d

)
dx ≤ C |A| g

( |uB̃|
d

)
+ C

(
αN d

N

|A|
)1− 1

N |A|∣∣∣B̃∣∣∣
∫
A

g (|∇u|) dx

≤ C
|A|∣∣∣B̃∣∣∣
∫
B̃

g

( |u (x)|
d

)
dx + C

(
αN d

N

|A|
)1− 1

N |A|∣∣∣B̃∣∣∣
∫
A

g (|∇u|) dx,

where we have used Jensen’s inequality. Hence

∫
A

g

( |u (x)|
d

)
dx ≤ C

|A|∣∣∣B̃∣∣∣
∫
B0∩B1

g

( |u (x)|
d

)
dx + C

(
αN d

N

|A|
)1− 1

N |A|∣∣∣B̃∣∣∣
∫
A

g (|∇u|) dx.

Similarly, since for i = 1, · · · ,M − 1 the ball Bi is starshaped with respect to any fixed ball B̃i contained in
Bi ∩Bi+1 �= ∅, we obtain

∫
Bi

g

( |u (x)|
d

)
dx ≤ C

|Bi|∣∣∣B̃i∣∣∣
∫
Bi∩Bi+1

g

( |u (x)|
d

)
dy + C

(
αN d

N

|Bi|
)1− 1

N |Bi|∣∣∣B̃i∣∣∣
∫
Bi

g (|∇u|) dx.

Therefore ∫
A

g

( |u (x)|
d

)
dx ≤ C

(∫
B

g

( |u (x)|
d

)
dx+

∫
Ω

g (|∇u|) dx
)
.

Summing over all A gives∫
Ω

g

( |u (x)|
d

)
dx ≤ C

(∫
B

g

( |u (x)|
d

)
dx +

∫
Ω

g (|∇u|) dx
)
. (9.1)

Since B is convex, by Proposition 7.4

∫
B

g

( |u (x) − uB|
d

)
dx ≤

(
αN d

N

|B|
)1− 1

N
∫
B

g (|∇u|) dx,
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where uB := 1
|B|
∫
B
u dx. Replacing u by u− uB in (9.1) we obtain

∫
Ω

g

( |u (x) − uB|
d

)
dx ≤ C

(∫
B

g

( |u (x) − uB|
d

)
+
∫

Ω

g (|∇u|) dx
)

≤ C

∫
Ω

g (|∇u|) dx.

Applying the latter inequality to du in place of u yields∫
Ω

g (|u (x) − uB|) dx ≤ C

∫
Ω

g (d |∇u|) dx ≤ C1

∫
Ω

g (|∇u|) dx,

where we have used the fact that g (dz) ≤const. g (z) for all z ≥ 0 (see Remark 7.3 and (7.4)). This concludes
the proof.
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