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Abstract
The generalization to gradient vector fields of the classical double-well, singularly perturbed func-
tionals,

1
I (u; 2) ::/ EW(VU) + | V2u|? dz,
Q
where W (&) = 0 if and only if £ = A or £ = B, and A — B is a rank-one matrix, is considered. Under
suitable constitutive and growth hypotheses on W it is shown that I. I'-converge to
I (u:Q) = K*HN"H(S(Vu)nQ) ifue WHH(Q;RY), Vu € BV (Q; {4, B}),
Tl 4o otherwise,
where K™ is the (constant) interfacial energy per unit area.
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1 Introduction

The theories of phase transitions and minimal surfaces have led to extensive study of singularly-perturbed,
nonconvex functionals of the form

Je (03 92) ::L%W(U)+E|Vv|2 dz, (1.1)

where W is a nonnegative potential with multiple minima. This functional was first studied by Modica and
Mortola [31], and subsequently it was applied by Modica [30] to the van der Waals—Cahn-Hilliard theory of
fluid-fluid phase transitions to solve an “optimal design” problem proposed by Gurtin [25]:

1
Minimize / W(u)dz, subject to a density constraint 9] / udx = 0a + (1 — )b,
Q Q

for some 6 € (0,1), and where W is a nonnegative bulk energy density with {WW = 0} = {a,b}, a,b € R,
a < b. The striking nonuniqueness of solutions (minimizers) is due to the fact that nucleation of phases may
occur without an increase in energy. In order to select physically preferred solutions, the van der Waals—
Cahn-Hilliard theory adds a gradient term which upon rescaling leads to (1.1). Using De Giorgi’s notion of
I-convergence ([19]; see also [18, 15, 1]), it was shown in [31, 30], that

I — lim J; (up; Q) =

e—0*t

400 otherwise, (1.2)

{ KoPerq(E) if w=xpa+(1—xg)b, |[E|=0|Q],ue BV (Q;{a,b}),
where Ky := fab V/W(s)ds. We conclude, therefore, that in the limit as ¢ — 0 partitions with minimal
interfacial area and given volume fraction 6 are selected.

Generalizations of (1.1)-(1.2) were obtained by Bouchitté [14] and by Owen and Sternberg [34] for the
undecoupled problem, in which the integrand in J. has the form e~ f(x, v(z),eVuv(x)). We refer also to the
work of Kohn and Sternberg [28] where the study of local minimizers for (1.1) was undertaken.

The vector-valued setting, where v : Q — R%, Q@ c RN, d, N > 1, was considered in [23, 10], where K is
replaced by

L
K; :=inf {/_L W(g(s))+ g’ (s)|2 ds: L >0, g piecewise C*, g(~L) = a, g(L) = b} . (1.3)

The case where W has more than two wells was addressed by Baldo [7] (see also Sternberg [35]), and later
generalized by Ambrosio [2].
The corresponding problem for gradient vector fields, where in place of J. we introduce

1
/EW(VU) +e|V2ulldz  if u e W22 ((;RY),
Q

400 otherwise,

I (u; Q) = (1.4)

arises naturally in the study of elastic solid-to-solid phase transitions [9, 17, 27, 32], and it has defied a
considerable mathematical effort during the past decade. Here u : Q — R¢ stands for the deformation, and



taking into account frame-indifference we assume that {W = 0} = SO(N)A U SO(N)B, where SO(N) is
the set of rotations in RY. In order to guarantee the existence of “classical” (as opposed to measure-valued)
non affine solutions for the limiting problem, and in view of Hadamard’s compatibility condition for layered
deformations (see also Ball and James [9]), the two wells must be rank-one connected. Without loss of
generality, we then assume that A — B = a ® v for some a € RY and v € SV~1 := 9B(0,1) ¢ RY. We are
now able to construct gradients taking values only on {A, B} and layered perpendicularly to v.

As a first simplification of the problem, we remove the frame-indifference constraint and we assume simply
that

{(W=0}={A,B}, A—-B=a®uw.

Here interfaces of minimizers must be planar with normal v (see [9]), therefore at first glance the analysis may
seem to be greatly simplified as compared with the initial problem (1.1) which requires handling minimal
surfaces. However, it turns out that the PDE constraint curl = 0 imposed on the admissible fields presents
numerous difficulties to the characterization of the I'-limsup. Precisely, if, say, Vu has a layered structure
with two interfaces then it is possible to construct a “realizing” (effective) sequence nearby each interface,
but the task of gluing together the two sequences on a suitable low-energy intermediate layer is very delicate.
This is where specific constitutive hypotheses placed on W will come into play (see Sections 5 and 6 below).

An intermediate case between (1.1) and (1.4), where the nonconvex potential depends on u and the
singular perturbation on V2u, has been recently studied by Fonseca and Mantegazza [22] (for other gener-
alizations see [21]). Also, in the two-dimensional case and when W vanishes on the unit circle (1.4) reduces
to the so-called Eikonal functional which arises in the study of liquid crystals [5] as well as in blistering of
delaminated thin films [33]. Recently, the Eikonal problem has received considerable mathematical attention,
but in spite of substantial partial progress (see [3, 6, 26, 20]) its I'-limit remains to be identified.

In this work, and under the standing hypothesis

(Hy) W is continuous, W (£) = 0 if and only if ¢ € {A, B}, where A — B = a ® v for some a € R?\ {0} and
ve SN

and additional assumptions on W, we show that as € — 07 the functionals I, I'-converge to

Jeay = { KIS (V)N i ue WHHOR), Vu € BY ({4, B)).
| oo otherwise,

where S (Vu) is the singular set of Vu, i.e. the collection of interfaces,

K* :=T —liminf I. (ue; Q)
e—0t

— inf {liminf L, (un;Qu) t 60 — 07, w € W22 (QuiRY) |y, — ug in L' (Q;Rd)} ,

n—oo

where @, is a unit cube in RY centered at the origin and with two of its faces orthogonal to v, and

T A ifx-v>0,
Y'Y B ifzov <.

The main results of this paper are:
Theorem 1.1 (Compactness) Assume that the double well potential W satisfies conditions (Hy) and
(Hs3) there exists C' > 0 such that .
WE) >0l - 4
for all £ € RN |
Let e, — 0%, If {u,} C W22 (Q;Rd) is such that

sup I, (un; ) < o0,
n
then there exist a subsequence {un,} and u € W' (Q;R?) | with Vu € BV (;{A, B}), such that

1
unkfﬁ/unk dr — u in Wt (Q;Rd).
9] Ja



Theorem 1.2 (T-liminf) Assume that W satisfies condition (Hy). Let u € Wh (;RY) | with Vu €
BV (Q;{A,B}). Then
I —liminf I; (u; Q) > K* Perq(FE),
e—0

where Vu (z) = (1 — xg (z)) A+ x& (x) B for LY a.e. z € Q.

In order to characterize the I'-limsup, we will consider two sets of additional constitutive hypotheses on
W. Without loss of generality we may assume that

A=—-B=a®ep.
First consider
(Ha)' W (€) — 00 as [¢] — oo
(Hs) W (&) = W (0,6x) where § = (&', &) € RVZD xR,

Note that (Hj3) is satisfied by the prototype bulk energy density
W (€)= min{|¢ — AP, ¢~ BI*}.

Theorem 1.3 (I-lim) Let Q C RY be an open, bounded, simply connected domain with Lipschitz boundary.
Assume that W satisfies the conditions (Hy), (Hz)' and (Hs). Suppose, in addition, that W is differentiable
at A and B. Let u € WH' (Q;R?), with Vu € BV (Q;{A, B}). Then

I — lim I (u4;Q) = K* Perq(F),

e—0t
where Vu = (1 — xg (v)) A+ xg (z) B for LY a.e. z €.

The hypothesis (H3) entails a one dimensional character to the asymptotic problem. Indeed in this case
the characterization of the constant K* can be greatly simplified. It can be shown (see Proposition 5.3) that
K* reduces to the analog of the constant K7 introduced in (1.3), precisely, K* = K where

L
K :=inf {/ W (0,9(s))+ g (s)|2 ds: L >0, g piecewise C', g(—L) = —a, g(L) = a} .
-L

Theorem 1.3 is related to work of Kohn and Miiller [27] who studied the minimization of the functional

/ ( ou )2
-— | te¢
0,0)x (0,1) \0T1

= 1 and boundary conditions.

0%u

2
Oxs

d$1d$2

subject to the constraint ‘59—1“2

The main effort of the present paper is devoted to the construction of a realizing or effective sequence
for the I'—limsup. It turns out that this construction is strongly hinged to the geometry of the domain. We
first assume that (see Figure 1)

for each t € R the horizontal section Q; := {(z/, zx) € Q: xy = t} is connected in RY, (1.5)
and that
t— HN1(Q) is continuous in (o, f), (1.6)

where
a:=inf{zy:2€Q}, [B:=supf{any:zeQ}.

It is easy to see that convex domains or cylinders of the form w x (a,b), where w C RN~! satisfy conditions
(1.5) and (1.6). This case is particularly simple since realizing sequences are one-dimensional, and the
assumption that W is differentiable at A and B is not used (see Theorem 5.5).



o/

Figure 1: Example of a domain where (1.5) and (1.6) hold.
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Figure 2: Example of a domain where (1.5) holds but (1.6) fails.

If we now remove the assumption (1.6) (see Figure 2), then one-dimensional sequences cease to be optimal
as they would yield K* Perg(F) rather than K* Perq(FE) as desired. In this case, realizing sequences are
one-dimensional except near horizontally flat parts of 9Q where HV 1 (0(2 N {(Jc’ ,oy) ERN tay = t}) >0
(see Theorem 5.6).

The situation becomes considerably more complicated when one drops condition (1.5) (see Figure 3) since
the gradient may change abruptly when two connected components of £2; meet. To solve this problem we
glue realizing sequences near the boundary to appropriate “mollifications” of wu.

We remark that the above mentioned difficulties cannot be resolved by performing rotations and trans-
lations of ) nearby the identity because the perimeter of the interface may change discontinuously under
these transformations (see Figure 4).

As we already mentioned, the hypothesis (H3) is quite strong as it entails a one dimensional character
to the asymptotic problem. In the second part of the paper we replace it with the isotropy assumption:

(Hs) W isevenin each variable §;,i =1,--- ,N—1,that is W (&1, , =&, - ,En) =W (&1, , &, ,EN)
foreachi=1,--- N — 1,
where
£= (&, ,gN)e]Rdxmed, ¢ = (&, - ,gN—l)eRdxmed,
—_—— ~—_——
N times N—1 times

so that € = (¢/,&n) € RX(N=1) x RY,
In this case we can prove the following result



Figure 3: Example of a domain where (1.5) does not hold.

Figure 4: Example of a domain where translations of rotations of {2 cause discontinuous changes in the
perimeter of the interface.

Theorem 1.4 Let Q C RN be an open, bounded, simply connected domain with Lipschitz boundary. Assume
that W satisfies the conditions (Hy), (Hs), and that there exist an exponent p > 2, constants ¢,C,p > 0 and
a convex function g : [0,00) — [0,00), with g (s) = 0 if and only if s =0, such that g is derivable in s =0,
g (2t) <cg(t) for all 0 < t < p,

cg (1€ = Al) if €= Al <p,

W ()
w cg(|¢ = Bl) if 1€~ B| < p,

(€)

and

1

gl —Cc=w@©<C(e+1)
for all ¢ € RN, Let u € WhH! (Q;Rd) , with Vu € BV (;{A, B}). Then

r- lirél+ I (u;Q) = K* Perg(E),

where Vu(x) = (1 — xg (2)) A+ x5 (z) B for LY a.e. x € Q. Moreover K* = Kper, where

Kper := inf {/ LW (Vv) + % IV2o|* de: L > 0,0 € W™ (Q;RY),
Q

1
Vv =+a®en nearby xny = :l:§, v periodic of period one in :c'} .

It would be interesting to know if Theorem 1.4 continues to hold without assuming the isotropy assump-
tion (Hs). We have not been able to prove this.
In the final section of this paper we exhibit an example that shows that without hypothesis (Hs), in
general, we may have
Kper < K.

Note that this is in sharp contrast with the first-order gradient theory of phase transitions modeled by (1.1),
where the asymptotic problem has always a one dimensional character.



2 Preliminaries

We start with some notation. Here  C RY is an open, bounded Lipschitz domain, £V and HN~! are,
respectively, the N dimensional Lebesgue measure and the N — 1 dimensional Hausdorff measure in RY. We
shall label the first N — 1 coordinates of a point € RY by 2/, and the N-th one by zy, so that x = (z/, xx).

We define A () as the class of all open subsets of Q@ and SNV ~! := {z € R : |z] =1} . Welet Q := (-3, %)N

be the unit cube centered at the origin, and we set Q(xg,¢) := 2o + Q. In the sequel C and ¢ will stand
for generic real positive constants which may vary from line to line and expression to expression within the
same formula.

For £ > 0 consider the functional

I : L' (Q;RY) x A(Q) — [0, +0o0]

defined by

1 2,12 : 2,2 (). pd
I (V) = /UEW(VU) +e|V2ul?dr  if w e W22 (;RY),
400 otherwise,

where the double well potential W : R4*N — [0, c0) satisfies the following standing hypotheses:

(Hy) W is continuous, W (¢) = 0 if and only if ¢ € {A, B}, where A — B = a ® v, for some a € R?\ {0} and
ve SN-1.

(Hs) there exists C' > 0 such that .
W) =clEl -5
for all £ € RN .
For simplicity of notation, we shall assume that
A=-B=a®en. (2.1)
The general case may be reduced to this situation by considering in place of W a new bulk energy density
W(e) == W((§ +&)RT)

for suitable & € R4*Y and a rotation R with Rey = v. We recall that Ball and James [9] have shown that
there exists a non-affine Lipschitz function u such that its gradient takes only the matrix values A and B if
and only if A and B are rank-one connected, i.e. rank (A— B) = 1, in which case the jump sets (or interfaces)
of Vu are planar and orthogonal to the direction ey. Under (2.1) the prototype blown-up macroscopic field
with one interface in the unit cell Q = (—1/2,1/2)" is

u(z) :=|zn|a. (2.2)

We review briefly some facts about functions of bounded variation which will be useful in the sequel. A
function u € L'(Q;R%) is said to be of bounded variation if for alli = 1,---d, and j = 1,--- N, there exists
a Radon measure p;; such that

[ wto) g @) = = [ w(a)di

for every v € C}(Q;R). The distributional derivative Du is the matrix—valued measure with components
pij. Given u € BV (;RY) the approzimate upper and lower limit of each component u;, i = 1,---d, are
given by

uf (x) := inf {t eR: 1ir61+ ELN LY {yeQnQ(z,e): ui(y) >t}) = 0}



and
u; () := sup {t eR: 1ir61+ ELN LY {yeQnQ(z,e): ui(y) <t}) = 0} )

while the jump set of u, or singular set, is defined by
d
S(u) == J{z € Q: uj () <uf ()}
i=1
It is well known that S(u) is N — 1 rectifiable, i.e.
S(u)= | J K. UE,
n=1

where HY~1(E) = 0 and K, is a compact subset of a C! hypersurface. If z € Q\S(u) then u(z) is taken
to be the common value of (uf(m), e ,u:{(x)) and (uy (x),--- ,uy (x)). It can be shown that u(zx) € R4
for HN=! ae. x € Q\S(u). Furthermore, for H¥ ! a.e. x € S(u) there exist a unit vector v, (x) € SN1
normal to S(u) at x, and two vectors u~(z), u*(z) € R? (the traces of u on S(u) at the point ) such that
i | [uy) — u* (@) NNy =
e=0 87 J{yeQ(zo.e): (y—2)vu(x)>0}
and
. 1
lim —

u(y) — u™ ()| Ny = 0.
e—0 el /{yeQ<zo,s>: (y—2)-vu(2)<0}

Note that, in general, (u;)" # (ut); and (u;)~ # (u™);. We denote the jump of u across S(u) by [u] :=
ut —u~. The distributional derivative Du may be decomposed as

Du=Vull +@u" —u)@v, HN 1 S(u) + C(u),

where Vu is the density of the absolutely continuous part of Du with respect to the N-dimensional Lebesgue
measure £V and C(u) is the Cantor part of Du. These three measures are mutually singular.
A set E C Q is of finite perimeter if xg € BV (Q;R) and we denote by Perq(FE) the perimeter of E in €.
Let &, — 0%. We say that a functional

I:L' (9 RY) x A(Q) — [0,+00]
is the I'—lim inf (resp. I'—lim sup) of the sequence of functionals {I., } with respect to the strong convergence
in L' (Q;R?) if for every u € L* (;R?)
I(u; Q) = inf {lim inf (resp. limsup) I, (un; Q) : up, € L* (4R, up, — win L (Q;Rd)} ,

and we write
I=T-liminf I, (resp. I =T — limsup Ian) .

n—00 n—00

Since I. (v;U) = oo if v ¢ W22 (Q;Rd) , it is clear that we may write

I(u; Q) = inf {lim inf (resp. limsup) I, (un; Q) : up, € W22 (Q;Rd) , Up — win Lt (Q;Rd)} .

n—00 n—00
We say that the sequence {I.,} I'-converges to I if the I' — liminf and I" — lim sup coincide, and we write

I=T- lim I.,.

n—oo



The functional T is said to be the I'—lim inf (resp. I' —limsup) of the family of functionals {I.} with respect
to the strong convergence in L' (Q; Rd) if for every sequence &, — 01 we have that

I=T—liminf I, (resp. I =T —limsup Ien) ,
n—oo

n—oo

and we write
I=T—1lim iglf I (resp. I =T —limsup I€> .
£— e—0
Finally, we say that I is the I-limit of the family of functionals {I.}, and we write
I=T—1limL,
e—0

if I' — liminf and I" — lim sup coincide.

3 Compactness

The following compactness result is a direct consequence of the one obtained in [23] for the functional
(1.1), and the structure of the limit has been characterized in [9]. For completeness we give here a short
self-contained proof.

Theorem 3.1 (Compactness) Assume that the double well potential W satisfies conditions (Hy) and
(Hz). Let en, — 07 If {un} C W22 (Q;R?) is such that

sup I, (un; ) < o0,
n
then there exist a subsequence {un, } and u € Wht (O RY) | with Vu € BV (;{A, B}), such that
1
Up, — —/ Up,, dx — u in WH! (Q;Rd) .
12 Jo

Proof. We claim that the sequence {un - Wll fQ Up, dx} is weakly compact in W11 (Q; Rd) . Indeed, by

(Hz), and with ¢ > 0 such that
sup I, (un; Q) =: ¢ < o0, (3.1)
n

we have

Ql,

1
EnCZ/W(VUn)deC/ |Vu,| de — —= |
Q Q c

and so {Vu,} is uniformly bounded in L* (Q; RIXN ) . By Poincaré-Friedrichs’ inequality we conclude that
the sequence {un — I_Kll\ fQ Uy, d:c} is uniformly bounded in W!:! (Q; Rd) . Thus, to prove the claim it remains

to show that the sequence {Vu,} is equi-integrable. Fix ¢ > 0. By (Hz) we have
1
W) > 5CI¢

for all £ € RN with |¢| > L := &, and by (3.1) we have

1

0< —C/ |V, | de < / W(Vuy)de < e,c— 0 (3.2)

2 J{|Vunl>L} Q

as n — 0o. Hence there exists n. such that

/ |Vuy,| de <e forall n > ne.
{\V’un|>L}



Since Vu,, € L! (Q;Rdx}v) for all m = 1,--- ,ne, by taking L larger, if necessary, we may assume that the
previous inequality holds for all n. This completes the proof of the claim.
Thus we may extract a subsequence (not relabelled) such that

1
U, — —/ Updz — uin W (Q;RY) (3.3)
9] Ja

and {Vu,} generates a gradient Young measure {v,} We claim that

TeN "
Ve =(1-0(x)) 6e=a + 0 (z) Se=p LNae. inQ,

where 6 (z) € [0,1]. Indeed, since W is nonnegative and continuous, the Fundamental Theorem on Young
Measures (see e.g. [8, 11, 36]) yields

0= lim [ W(Vu,) dac>/ W (&) dvy (&) dux;

n—oo Jo RAXN
hence, for LV a.e xz € Q

W (&) dvz () =0,

]RriXN

and thus by (H,) the claim follows. In turn
Vu(r) = /RM Edv, (§)=(1—0(x))A+0(x) B LNae. in Q. (3.4)
Let M > 0 and set
(&)= inf{/ mm{\/i M}|h’ )| ds: h:[0,1] — RPN piecewise C*, h(0) =&, h(1) = A}.

Then ¢ is Lipschitz, ¢ () =0 if and only if £ = A, and

{v(Vu,)} is uniformly bounded in W' (Q;R). (3.5)
Indeed,
1
/|v ¢ o Vuy,) |dx</ VW (Vuy) |V un|dx< IEn un,Q)§§
and

/|gaoVun|d:c§/M|Vun|d:c+<p(0)|ﬂ|,
Q Q

where we have used the fact that ¢(¢) < M |€ — 0] + ¢(0). Hence (3.5) holds, and up to a subsequence (not
relabelled)
¢ (Vu,) — H in L' (;R), (3.6)

where H € BV (€;R). On the other hand, the Young measure generated by {¢ (Vu,)} is
ftz = (1= 0(2)) diep(a) + 0 (2) S1—pip) LY ace. in Q,
and the strong convergence in (3.6) now yields 6 (z) € {0,1} £V a.e. in Q, precisely
0(2) = xr (2)
for some measurable set E C . By (3.4)
Vu(z)=(1—-xg(x)) A+ xg(z) B
and

H=(1-xg()e(A4)+xe(z)e(B)
=xe (z) ¢(B) € BV (R),

therefore the set I has finite perimeter and Vu € BV (€;{A, B}). Moreover, since v; = ¢—vy(y) and by
(3.2) we have that Vu, — Vu in L' (Q;R>*Y) . =

10



Remark 3.2 (i) We remark that the conclusion of Theorem 3.1 still holds if we do not impose the condition
(Hz) but, instead, we assume apriori that the sequence {u,,} converges weakly in W11(Q; R?). Indeed, the
argument follows exactly that of the latter proof once (3.3) has been established.

(ii) If we assume that
W (€) > Cy|¢F for all € € RN with |¢] > L,

and for some 1 < p < oo, then
1
Up, — —/ Un,, dz — u in WP (Q;R?).
€ Jo

Indeed
Cl/ [V, |V de < / W (Vuy,, ) dz — 0.
[V 22} 0

On the other hand,

/ [V, — Vul de < (L + |A| + |B|)"—1/ Vi, — Vu|dz — 0.
{|vun, [<L} Q

Theorem 3.3 Let u € Wh! (Q;R?), with Vu € BV (Q;{A, B}). Then the function u has the form
u(r) =u(r',zn) =y +azxy — 2¢ (z) a,
where 79 € R, yp-a = 0, ¢ € W (Q;R) satisfies Vip (z) = xg (v)en for some set E C Q with
Perq(F) < oo, and E is layered perpendicularly to ey , that is
(oo}
ENQ=Jw x {a },
i=1

where the sets w; C RV~ are connected, bounded and open, a; € R. Moreover, in any open subset ' of
with the property that for each t € R the horizontal section

{(@,xn) €Y : xy =t} is connected in RY,

we may write
u(z) =u(@,en) =7 +ary —2h(zy)a  ae in,

where h € W12 (R;R), h' € BV (R;{0,1}).
Proof. As in [9], in view of the fact that for £V a.e. z € Q.

Vu(z)=(1—xg(z))A+xeg(x) B=(1—-—xg(@)a®eny — xp(z) a®en
=a®en —2xg (x)a®en,

we may conclude that F is layered perpendicularly to ey , and that the function u has the form
w(z) =u(r,zy) =7 +axn — 2¢ (2) a,
where 79 € R4, vp-a =0, ¢ € WH (; R), satisfies Vi (z) = xg (z) ey. Moreover, since
Veu (@, zn) =V (o +axy —2¢ (z)a) =0
we conclude that in any open subset ' of Q with the property that for each ¢ € R the horizontal section
{(2',2n) €  : xy =t} is connected in RY,

we may represent u as
u(z)=1u(zn) =7 +axn —2h(zy)a ae. in Q)

where h € W1 (R;R), /' € BV (R;{0,1}). m

11



4 TI'—liminf: the lower bound
In view of (2.2), we define
K* ::I‘flim(i)rlfl6 (lzn] a; Q) (4.1)

= inf {Hminf L, (un; Q) :ep — 0T, u, € W22 (Q;Rd) , Up — |zy|ain L (Q;Rd)} ,
n—oo
1 1\N
where, we recall, Q := (75, 5) .

Theorem 4.1 Assume that W satisfies condition (Hy). Let u € Wh ((;RY) | with Vu € BV (;{A, B}).
Then
I — liminf I; (u; Q) > K* Perq(FE),

e—0

where Vu = (1 — xg (z)) A+ xg (z) B.

The proof of Theorem 4.1 is hinged on the following lemma.

Lemma 4.2 Let w C RV~ be a connected, bounded, open set, with HN~1 (0w) = 0, and consider the
cylinder U := w x (o — h,a + h), where « € R and h > 0. If ug € Wh! (U;Rd) is such that

A ifzy >«
, - b
Vuo(:c,ﬂ?N){ B ifzn<a,

then
I —liminf I, (up; U) = K*HN 71 (w).

e—0

Assuming that Lemma 4.2 holds (its proof is left for the remaining of Section 4), we conclude the proof
of Theorem 4.1.
Proof of Theorem 4.1. By Theorem 3.3 and since 0f2 is Lipschitz, we may write

OENQ = Uwi x {a; }, with ZHN_l(wi x {a; }) < o0,
i=1 i=1

where the sets w; € RN~! are connected, bounded and open, with HN 1 (Owi) =0, a; € R. Let § > 0 and
choose k£ > 1 such that

k
HN O ENQ) <> HN T (wi x {ai }) + .

i=1
Let w! CC w; be connected, bounded and open, with HY¥~! (dw!) = 0, and such that
5

HN Y (Wi x {ai ) < HN (W] x {au }) + o

Since each w] x {a; } CC Q we may find h > 0 so small that

k
Uw;x(ai—h,ai—i—h)CCQ
i=1

12



and the sets w] X (a; — h,a; + h) are mutually disjoint. Then for any sequences ¢, — 07 and {u,} C
W22 (Q;Rd) such that u,, — v in L' (Q;Rd) we have

n—00 n—oo

k
liminf I, (un; Q) > lim inf I, <Un5 U wi X (o = hy o + h))
i=1

k
> Zlinnlioréffgn (un;wi x (o — h, i + h))

i=1

> ST EHY (¢ s )

i=1

k
> ZK*HN_l (wi X {Oéi }) —0K*
i=1

> K*HN L (0*ENQ) — 20K,
where we have used Lemma 4.2 to assert that

liminf I, (un;w) x (a; — by +h ) > K*HY 71 (W] x {ai }).

Hence
[ —liminf I, (u; Q) > HY "1 (O*ENQ) — 26K~

e—0t

and it suffices tolet § — 07. m

It remains to prove Lemma 4.2. Let w C RY~! be a bounded, open set, with H¥~! (dw) = 0, and let
h > 0. Define

F(w;h):=I' — hm(i)llf I. (Jzn|a;w x (—=h,h)) (4.2)

E—>

=inf {liminf I, (up;w x (=h,h)) : ey — 0, u, € W2 (w X (=h,h) ;Rd) ,

n—oo

un, — |zny|ain L' (w x (=h,h); R}

Note that K* = F (Q'; 3) , where Q' := (-1, %)Nﬁl.
Lemma 4.3 (i) F(2' +w;h) = F (w;h) for every o' € RN 7L
(i) if w1 C wsy then F (wi;h) < F (we; h);
(i11) if w1 Nwa =0 then F (wy Uwas h) > F (wi;h) + F (wa; h) ;
(i) if a > 0 then F (aw;ah) = oV ~1F (w;h), while if 0 < a < 1 then F (aw; h) > oV ~1F (w;h);
(v) F(wih)=HY"1 (w) F(Q':h);
(vi) F (w;h) =F (w;d) for each § > 0.

We note that Lemma 4.2 is a direct consequence of Lemma 4.3 (v) and (vi).

Proof. (i) follows immediately from the translation invariance of the energies I, (u,;-), while (ii) and
(iii) are consequences of the nonnegativeness of the energy densities of I, , together with the fact that
admissible sequences for wy X (—h, h) are still admissible for wy X (—h, h) when wy C wa.

To prove (iv) let e, — 0T and let {u,} C W2 (w x (—h, h) ;R?) be any sequence such that u, — |zx]|a
in L' (w x (—h, h);R?) . Set

vy (2) == aup(z/a), x € aw X (—ah,ah).

13



Clearly |zy|a = a|zy/ala and so v, — |zn|a in L' (aw x (—ah, ah);R?), and we have

1
F (aw; ah) < liminf/ —W (Vo) + ag,|V30,|? da
=0 Jawx (—ah,ah) ¥En
. 1 x 1o zy |2
= lim inf —W (Vun (—)) + aep |[—Vu, (—) dx
=0 Jawx (—ah,ah) ¥En « «Q «Q
1 1 2
= liminf o / —W (Vuy, (y)) + ag, | = Vu, (y)| dy
n—o0 wx (—h,h) OEn «
1
— N1 1iminf/ —W (Vun (y)) + en ‘VQUn (y)|2 dy.
n=00 Jux(—h,h) €n
Hence F (aw;ah) < oV 71F (w; k), and similarly
. 1 . 1 1 .
F(w;h)=F - ow; Eah < F]—'(aw,ah) .
This proves that F (aw; ah) = oN "1 F (w;h).
Next let 0 < o < 15 then F (aw; h) > F (aw;ah) = aN 71 F (w; h).
To show (v) we use Vitali’s Covering Theorem to decompose
w = U(al + 7]1@/) U Ny
i=1
with HV=1(Np) = 0, a; + 1;Q' mutually disjoint, 0 < n; < 1, Q' := (f%, %)Nfl , and
(o)
dont =1 (W),
i=1
For all k € N, by (ii)-(iv)
k k k
F(wih) > F (U(ai - mQ');h> >N Flai+mQh) =Y 0 TF(Qh)
i=1 i=1 i=1

By letting £ — oo we conclude
F(wih) = HN N w) F(Q'5h) -

Conversely, with
o0

Q' = U(bz + dw) U Ny

i=1
with HN=1(Ny) = 0, b; + 6;w mutually disjoint, and

oo

252\’*1 -t
CT R Ty

i=1
we deduce that

F(Q'h) F(wsh),

1
>_ -
~ HN (W)

and we have concluded the proof of (v). This result will entail (vi) provided we show that
F(Q'5h) = F(Q'59)
for every § > 0. We first claim that for all k € N

F(kQ'56) =N F(Q'56).

14



Indeed, write
k‘N7 1

kQ = | J (ai+Q)UNy

i=1
with HN=1(Ng) = 0, a; + Q' mutually disjoint. By (iv)

kal

ENTUE(Q'56) = F (kQ'3 k6) > F (kQ'6) > Y F(ai+Q'30) = kN ' F(Q';9) .

i=1

Next we show that

F(Q50)=F (Q'; %) :

Indeed by (iv) and (4.4)

F(Q'36) = g F (hQ'3 k) = o= KV F (@'5k0) = F (1 19),

and thus

/. _ /. é _ ’-é
f(Q,5)J’<Q,kk) J-'<Q,k>.

It follows that if p,k € N, k £ 0, then
/. B _ /.
F(@:20) = F(Q19), (4.5)

and to assert (4.3) it suffices now to establish the continuity of F (Q';-) . Let 1, — r and extract a subsequence
r. — r. Without loss of generality assume that r/, — r* (similarly, if r/, — 7). Then

F(Q';r) <liminf F (Q';7),).

n—00

Let g, € Q such that g,r > 7}, > r, ¢, — 1. Then by (4.5)

F(Q'5m,) < F(Q5qnr) = F(Qsr),

and thus
limsup F (Q';7)) < F(Q';r).

n—oo

This conclude the proof. m

Remark 4.4 It follows immediately from Lemma 4.3(vi) that the effective energy concentrates near the
interfaces. Precisely, if
F(w;h) = lim I (up;w x (—h,h))

then for each 0 <n < h
lim I, (un;w x [(=h,h)\ (=n,1)]) = 0.

n—oo

Indeed, by Lemma 4.3(vi)

lim I, (up;w X (=h,h)) = F (w;h) = F (w;n) <liminf I, (up;w x (—,n))

and thus
lim I, (up;w % [(—h,h)\ (—=n,n)]) = 0.

n—oo
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5 [I'—limsup: the upper bound. Geodesic hypotheses.

In agreement with our adopted notation, in what follows the constants C' and Cs may change from line to
line. Throughout this section we assume that W satisfies the following conditions:

(Hy) W is continuous, W (§) = 0 if and only if ¢ € {4, B}, where A = —B = a®ey for some a € R? \ {0};
(Hz)" W (§) — o0 as [¢] — oo;
(Hs) W (§) > W (0,&n) where & = (¢/,&n) € RV x RY,

Note that (Hs) is verified by the prototype bulk energy density

W (€)= min{|¢ — 47, ¢~ B’}

5.1 Characterization of K*

In this subsection we prove that if (Hy), (Hz)', (H3) hold then
v 2
K* = inf {/ W (0,g(s)) + |9’ (s)|"ds: L >0, g piecewise C', g(L) = —g(~L)=a ;.
-L

Proposition 5.1 Assume that W satisfies condition (Hz)'. Let {e,} C Ry and {u,} € W?2 ((—3,3);R?)
be two sequences such that €, — 07 and

1
2 W(0,u]
sup/ WO,u,) + e U dt < +oo.
neN 7% En

Then

sup sup |ul, (t)] < 4oo.
neN ye (-1 1)

Proof. Since u, € Loo((f%, %) :R9), without loss of generality we may suppose that 0 < &,, < i. Let

1
2 W(0,u,
¢ 1= sup W0,u,) +en |u’,;|2dt < 00,
5

n _1
3 n

and fix ¢, € (0, %) and t € (f%, %) dt4e, < % then
1 t+en

— W (0,u,,)ds < c,
E?”L +

and so there exists t,, € (t,t+ €,) such that
W (0,ul, (t,)) <c.
By (Hz2)" we may find a constant C' = C(c) such that sup,, |u), (t,)] < C, and Hélder’s inequality now yields

1/2

1 1/2
<C+ <€n/ |u;;|2ds> < C+ /e (5.1)

t+en
01 s ()l + (=0 [ s
t

Ift+e, > % then ¢t > % —¢ep and so t — e, > % — 2e, > —%. Therefore we may reason as above, using the
interval (¢ — ey, t) in place of (¢,t + &,) to obtain (5.1), and we conclude that SUPye(_1 1) lul, (t)] < C++/e.
5
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Recall that (see (4.1) and (4.2))
1
K*=7(Q,1) = inf{liminf/ —W (V) + n \v2un| dz : g, — 07, {u,} € W22 (Q;RY),
n—oo Q En
— |zx|ain L (Q;Rd)},
where @ := Q' x (f%, %), Q = (f%, %)Nfl , and introduce the “one-dimensional” version of K*,
T W (0,uy)

+eéen |ug|2dt cen — 0T, u, € W22 (-4, ;Rd) ,

o in L' (<1, 1) ;Rd)}.

An immediate consequence of the latter proposition and the compactness results of Section 3 is the

K, = inf{liminf
n—oo n

1
2

following corollary.

Corollary 5.2 Assume that W satisfies conditions (Hy) and (Hz)'. Given any 1 < p < oo there holds

n—oo

1 /
K. = inf{liminf/i W(f’u” ten P dt s en — 0% u, € W2 ((-1,1)3RY),
-3 n
e lfa i WP (=L, 1) ;Rd)}.

Proof. In view of Proposition 5.1, energy bounded sequences admissible for K, are uniformly bounded
in Whe ((=3,1);R?), and, in particular, must converge weakly to |-|a in W' ((—3, 3) ;R?). The result
now follows from Remark 3.2(i). =

Proposition 5.3 Assume that W satisfies conditions (H1), (Hz)" and (Hs). Then
K*=K,=K,
where
L 2
K =inf {/ W (0,9 (s))+ g’ (s)]"ds: L >0, g piecewise C*, g(L) = —g(—L) = a} .
-L
Proof. We divide the proof in three steps.
Step 1: We prove first that K* = K. Clearly
K.>K" =F(Q3).

Indeed, if {e,} C Ry and {u,} C W2 ((—3,1);R?) are two sequences such that e, — 07 and u, — |t|a
in L1 ((75, 1);R?), then the sequence vy, (z) := u, (zy) is admissible for F (Q'; ) . To prove the converse
inequality, let {e,} C Ry and {u,} C W%?2 (Q;R?) be such that &, — 0T and u, — |zy|ain L* (Q;R?) . For

/

HN1ae. &' € Q the function u® (t) := uy, («',1) ) e W22 ((—3,3);R?) andu? — [t|ain L' ((—3,3);RY).
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Using (Hs) and Fatou’s Lemma we have

n—oo Jg En n—oo 1
2

1
21
lim inf W(Vun +en |V2un|” dx_hmmf/ </ E—W(Wn)“nw%nf dt) dz’

LA du?’ 2t

> liminf — n o | gt | da

=ty [ /W< dt>+€ i ’
LA du?’ d2u

2/ lim inf / —w (0,8 ) e, || dt | da
Qe —Llé€n dt dt

> K, de' = K
Q/

Step 2: We now prove that K, = K1, where
> W0,
K, = inf{liminf/ M +en |ug|2 dt: e, — 0", u, € W22 ((—%7 %) ;Rd) ,
1 €

n—oo -1 n

— |tlain L' ((-3,3);RY), u), = £a near t = £3 (resp.)}.

Clearly K; > K.. To prove the converse inequality, let {¢,} C Ry and {u,} C W22 ((—%, %) ;Rd) be such

that £, — 0%, u, — [t|a in L' (-3, 3);RY), and

= 11m1nf/ W0,u,) +en |ui{|2 dt.

n—oo

Without loss of generality, and up to the extraction of a subsequence, we may assume that

3 / 3 /
hminf/ W0, u) +en |ui{|2 dt = lim / W0, u) +en |ui{|2 dt,
,% En En

n—oo n—o00 7%
and, by Corollary 5.2, that u,, — [t|a in W11 ((f%, %) ;Rd) . Since by Remark 4.4

2 W(0,ul)

n

lim t e U + |un — ta] + |ul, — aldt =0, (5.2)

n—oo

there exists tg € (%, %) such that (up to the extraction of a further subsequence, if necessary)

[W (0, uy, (t0))

- +en ] (t0)[* + [un (o) — toal + |u}, (to) — a| | = 0. (5.3)
n

lim

n—oo

Define
() wn()un() (1_wn(t))((t_tO)a‘f'“n(tO))a
where 1, is a smooth cut-off function such that v, (t) = 0 for t > tg + &,, ¥, (t) = 1 for t < g, and

[l (8)] < Clen, |0 ()] < C/el.

Then
w, (t) = P, () (un () — un (to) — (t —to) @)+ (t) uy, (1) + (1 — 0 () a, (5.4)
and
wy, (1) = P () (un (t) — up (to) — (t — to) @) + 21y, (t) (uy, (1) — @) + Yn (t) uy,. (5.5)

18



By Holder’s inequality, for t € (tg, to + &n)

to+en ) 1/2
() = al <l o)l + (= [ il as) (5.6)
to
and thus
tot+en
[tn (8) — up (to) — (t — o) a| < / [ul, (s) — a|ds (5.7)
to
to+en ) 1/2
< en il (to) — al + &n <gn/ | ds) .
to

Since W is continuous and W (0, a) = 0, we may find p > 0 and a modulus of continuity n = 7 (s) such that
W (0,&n) <n([€n —al) for all [En —al < p.

By (5.4), (5.6) and (5.7), for t € (tg,to + &) we have

|w), (t) —af < EQ |t (£) = un (o) — (t = to) al + |uy, (t) — al

n

to+en ) 1/2
< Clul, (to) —a|+C (En/ Jun| ds) <p

to

for &, sufficiently small, where we have used (5.2) and (5.3). Hence for ¢ € (to,to + &,) and since 7 is

increasing
to+en 1/2
W (0,u)) <1 (om (to) —al + C ( / |u1:|2ds) ) 7
to

and thus

0 n to

to+en / toten 1/2
/ Mdt <n (C’ lup, (to) —al + C <5n/ !’ |° ds) ) — 0.
t

Similarly, by (5.5), (5.6) and (5.7) and for ¢ € (to,to + &n),

c c
wn ()] < =5 lun (t) = un (to) = (t = to) al + — luy, (t) — al + Juy

C C to+en 1/2
Sttt a4 S (o0 [ as)
3 En to

IN

n

and we have b
2 _ C 2 o2 2
ol (O < Sty ()~ af +.0 [ il ds + Cen
n to
Hence, in view of (5.2) and (5.3),
toten

foten 2 2 2
/ en W ()7 dt < Cul, (to) —al” + Can/ lur|” ds — 0.

to to

Since wy, (t) = uy, () for t < tg and wl, (t) = a for t > tg + €, we conclude that

1 1
2 W(0,w), . 2 W(0,u]
lim sup MJrsn |w;{|2 dt < lim / MJrsn |ug|2 dt = K..
n—oo J_1 n n—oee 1 En
By repeating the same construction nearby t = —% we ensure that the new sequence satisfies w], = +a near

t= :l:% resp. Hence K; < K., and the proof of Step 2 is complete.

19



Step 3: We finally prove that K, = K. Let {¢,,} C Ry and {u,} C W%?2((—3,1);R?%) be such that

En—>0+, Uy — |t|ain It ((_%a%);Rd),and

n—oo

z ’
K. = liminf/ M +ep u? dt.
7% n

In light of Step 2, we may assume, without loss of generality, that «), = a near t = % and u, = —a near
t = —1. Define v, (s) := iun (ens) for s € [fi, i} . Then v}, (s) = ul, (€n$), vl (s) = equl (ens), and
SO

2 W (0,4l (1)
En

1
2en
en ul (1) dt = / W (0,1, (en5)) + €2 [t (2n8)|? ds
1 1
2 T 2en

1
2en

= W (0,0, (8)) + [0 (s)]> ds > K,
1
T 2eq

therefore K, > K. Conversely, let g : [~L, L] — R be a piecewise C! curve, with g (L) = —g(~L) = a.
Consider any sequence {e,} converging to 07, and define

—a ift < —ep,L,
¢
t
un, (t) ::/ v (8) ds, v, (t):=1¢ ¢ (5_) if |t| <enL, (5.8)
0 n
a if t >e,L.

As in [23], we have

) —a ift <0, . 11\ od
vnﬂ’uo.{a 10, in L? ((—3,3);R?), for any 1 < p < o0,

and so u, = f(f vy (s) ds — [t|a in WP ((—=3,1);RY) . Moreover,

: / :
K. < lim/ WQO.un) y o e = lim/ L(EO’””) +en vl dt
-1 -1 n

T n—oo En n—oo

L
- / W (0.9(9) +1g' (9 ds.

and taking the infimum over all such functions g we get the desired inequality. m

Remark 5.4 Note that the argument of Step 3 in the latter proof, together with Propositions 5.1 and 5.3,
ensures that given any sequence {e,} converging to 0T there exists a sequence {u,} converging to |zx|a in
WLP for all p € [1,+0c0), and such that

1
K*= lim [ —W (Vu,) +en |V2un|2 du.

n—oo Q En

Indeed, for each k € N construct via (5.8) a sequence {un x} corresponding to a function g admissible for
K and such that

L
2 . 1
[ w006+l () ds < K7+ 4.
-L
Then, with u(z) := |xx|a we obtain
dim ek = ullyp gy =0,
and

1
limsup lim —W (Vup k) + €n ‘VQun7k|2 de < K*.

k—oo N0 QEn
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On the other hand, by Theorem 4.1 we always have the opposite inequality, and so

1
lim lim [ =W (Vuny) + 0 | V2un| de = K7

k— o0 n—o00 Q E€n

It suffices now to extract a subsequence {k,} of {k} such that the subsequence z, := un,, satisfies (see
Lemma 7.2 in [16])

= sy =0
and .
lim inf —W(Vzn)+€n|v2zn|2 de = K*.

n—oo Q ETL

5.2 Special domains

Let
a:=inf{ey:2e€Q}, p[:=sup{zn:zecQ}. (5.9)

Throughout this subsection we assume that the domain  satisfies (see Figure 1):

for each ¢ € R the horizontal section € := {(2/,2n5) € Q: xy =t} is connected in RY (5.10)

and
t— HN71(Q,) is continuous in (a, B). (5.11)

Theorem 5.5 Assume that W satisfies the conditions (H,), (Hz)' and (Hs). Let w € Wh (Q;R?), with
Vu € BV (;{A, B}). Then
I'— lim I (u4; Q) = K* Perq(F), (5.12)

e—0t

where Vu(x) = (1 — xg (x)) A+ xg (x) B for LY a.e. x € Q.

Proof. In view of Theorem 4.1, to prove (5.12) it suffices to show that for any sequence {e,} C R4 such
that &,, — 01 we have
I —limsup I, (u;Q) < K* Perq(F).

n—oo

Thus we fix a sequence {e,} C Ry converging to 0%. For simplicity in the notation we drop the subscript n
so that € := &,,. By Theorem 3.3 and (5.10) we may assume that

u(z) =u(zn) =7 +axy —2h(zn)a ae. in
where h € W1 (R;R), b/ € BV (R;{0,1}), with
S(vuyna=Ja,
i=1

and Q, == {z = (¢/,zn) € Q: zny =;} for some [; € R. We divide the proof in two steps.
Step 1: Assume that the number of interfaces is finite, that is

S(Vu)ynQ=|Ja,
=1

for some m € N, and some finite family I; < ---

< ln. Fix k € N, and in view of Proposition 5.3 consider a
piecewise C! curve gy, : [~L, L] — R?, with g (L) =

—gi (—L) = a, such that
L / 2 * 1
W (0,9 (5)) + gk (5)|"ds < K™ + +. (5.13)
L
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Let € > 0 be so small that [; + e L < ;41 —eL,fori=1,--- ;m — 1. Set

vep () = gk (—sgn(u' (l; —eL)-a) S;li) ifly—elL<s<lj+eL,i=1,---,m,
SR @ (s) otherwise in R,

where we have extended @’ constantly to (—oo,ly —e L) and (I, + £ L, +0), and define

TN
Ue k (T) = Ue i (TN) ::ﬂ(ll)Jr/ Ve (8)ds, x e RV,
I

Then

li+eL
‘/|Vu€k—YhAdm<(7§:/a [

li—eL

J— . m L
( sglz)‘+1] dSSQCmEL—I—CZE/ lgr ()] dt,
i=1 YL

and since uc j (z) = u (z) when oy = 1, by Poincaré’s inequality we have that uz — uin W (;RY) as
¢ — 0%. Further,

W (0, 1 —_ 7\ |?
lim I, (uep; Q) = lim Z/ (0,gr (£25)) +2 g (iIN Zz) da
e=0t = QN{li+e L<wn<lip1+e L} € £ €
I plitel W (0, g (2220 1 .y
= lim / ( (0,95 (2% ))+— g <j:—s Z> HN T {z e Q: oy =s})ds
=0t = Ji,_c1 € 5 €

) (W (0,90 () + |9k OFF ) KN ({2 € Qs oy = et + L)) dt

( [ w0 )+l <t>|2dt> Sor o) < (K04 ) YR ),

=1 i=1

I

=

L o2
INGERN g

—

where we have used (5.11) and (5.13). Hence

m

limsup lim I (ue5; Q) < K* ZHN71 (Q,) = K* Perq (E),

k—oo &—07F ;
=1

and in view of Theorem 4.1 this inequality is actually an identity. As in Remark 5.4, it is possible to extract
a subsequence {k.} of {k} such that the subsequence u. := u j, satisfies

Jim, e = s ) =0,

and
lim I, (ue; Q) = K* Perq (E) .

e—0t

Step 2: Suppose now that the number of interfaces is infinite, that is

S(Vu)ynQ=|Ja,
i=1
where O, = {z = (2',2n) € Q: oy =1;}, [; € R. We claim that interfaces can only accumulate at the
top or bottom of Q, i.e. if [ is an accumulation point of {l;} then I € {«, 3}, where o and 3 are defined
n (5.9). Indeed, if €; # () then we may find z = (2/,]) € Q and, in turn, an open cylinder of the form
B’ (2',r) x (I = h,l + h) C Q. For 4, large enough B’ (2';7) x {l;,} C 2, where {l;_} is a subsequence of {l;}
converging to [, and so

00 > iﬂf“ ()= 3 HY (@, ) = S HY (B (@) = o,
i=1 ik

ik
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and we have reached a contradiction.
Fix an integer m € N and consider

Um;:{xeﬂza+6m<xz\/<ﬁ—5m}v

where 8, — 0% and {l;} N {a + &m, 3 — 6m} = 0. Then LN (Q\U,,) — 0 as m — oo, and Vu has a finite
number of interfaces in U,,. By Step 1 we may construct a sequence {u™} such that u™ — wu in Wh! (Um; Rd)
as e — 07, u™ = u in Q\U,,, and

lir%fE (u*;Up) = K* Pery,, (F).
E—

m

We have

lim lim I, (% Q) = lim lim I, (u*;Uy) = K* lim Pery, (E)= K*Perq(E).

m—o0 e—0 m—o0 e—0 m— 00

We can conclude as in Step 1. =

5.3 2'-connected domains

Throughout this subsection we assume that for each ¢ € R the horizontal section
Q= {(2',2n) € Q:xy =t} is connected in RY. (5.14)

Here we allow for the possibility that ¢ — H~~1(Q;) is not continuous (see Figure 2). In this case a more
careful analysis is required near the boundary under the additional hypothesis that W is smooth at the wells.

Theorem 5.6 Assume (5.14) and let W satisfy the conditions (Hy), (Hz) and (Hs) . Suppose, in addition,
that W is differentiable at A and B. Let u € Wht (Q;Rd) , with Vu € BV (Q;{A, B}). Then

I — lim I (u4;Q) = K* Perq(F),

e—0t
where Vu(x) = (1 — xg (x)) A+ xg (x) B for LY a.e. x € Q.

Proof. By virtue of Theorem 4.1 it suffices to prove that given an arbitrary sequence {e,} converging
to 0% we have
I' —limsup I, (u; Q) < K* Perq(F). (5.15)
n—-+o0o
Fix one such sequence {e,}, and for simplicity of notation abbreviate € := &,,. We divide the proof of (5.15)
into three steps.
Step 1: One interface. We assume first that u has the form

u(z) =|zy|la ae. in

so that there is only one interface Qp = {x = (2/,2n) € Q: znx =0}, and we may write g = w x {0},

where w is an open bounded connected subset of RY~!. Let 0 < h < imin {B,—a}, where a and 3 are

defined in (5.9), and consider a sequence {d,,} converging to 07 as m — +oo. We Write d := . For every

0 we construct a smooth cut-off function s € C° (RN; [0, 1]) such that ¢ = 1 in w(; (—3, 3) and 5 =0
outside wyfy x (—%, %) , where for s > 0 we denote w} = {x € RN dist (z/,w) } (se Flgure 5). In
view of Proposition 5.3 consider a piecewise C! curve g : [-L, L] — R?, with g( )= —g(—L) = a. Extend
g to all of R by setting g (t) = —g (—t) := a for all ¢ > L, and define

Ue,s () == 5 () 2o () + (1 — 5 (2)) u, (5.16)

23



h .

% U, ;=2 Z

il e
Zi

RN el

Cis

Figure 5: Construction for one interface in Step 1 of Theorem 5.6. The shaded region represents {0 < 15 < 1},

and corresponds to Aj;\ Af where Aj; := wys x (—2, ) and A} := wj x (=%, %). The function u. 5 coincides

373
with u outside A;‘ 5 and with z. inside A+.

where z. (z) == [ g (£) ds (see Figure 5). Note that u € W22 (Q\ (w] x (f%, %)) ;RY) . Then

1
/—W(Vu6,5)+e|v2u€,5\2 dm:/ Yy (va) )+ 2| V22| do (5.17)
Q¢ {ws=1} €
+/ —W(Vug(s +e |V | da.
{o<ys<1} €

By the fact that g (t) = —g (—t) := a for all ¢ > L we have
/ EW(VZE +s\v2z€\ de < HN ! (wf / W (0,9(s)) + g ()] ds. (5.18)
{vs=1}

Also, as W is continuous in RN W (a ® ex) = 0, and W is differentiable at +a ® ey, we may find a
modulus of continuity n with

im 1) g (5.19)
s—0t S
and such that
W) <min{n(|¢—a®enl|),n(|{+axen]|)} forall &€ RIXN (5.20)
Hence, by (5.20),
/ —W(Vu€5 +5|V ugg‘ d:c</ —n(|Vu557Vu| +5|V2u55‘ dx. (5.21)
{o<eyps<1} € {o<ys<1} €

To estimate the right hand side of (5.21) note that

[Vue,s = Vul < [Vips| [2e — ul + 95 [Vze — Vul, (5.22)
|V2uc,s| < |V20s| |2 — ul + 2 |Vips| |Vze — Vu| + 15 | V22| .

Fix Ly > L. For |zn| > €L; we have

— fi >el
_lon|a= Efo a)ds or xy > €Ly, (5.23)
—Ef )+a)ds forxzn < —cLy,
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and so from (5.22)

|Vu575 — Vu| < Cse, V2u575| < Cse (5.24)
for |zn| > €L, while for |zn| < el
_ oy 2, | <Ll (2N | ¢
V=l <o ()| +Ivul <0 [ < <o (2)| = 2 (5.25)
and
el
|2 () — u(2)| < |2 (2, eL1) —u (2’ eLy)]| +/ IV (2e —u)| doy < eC.
—elLy
Hence, from (5.22) we have for |zx| < el
5 C
Vs = Vul < Cie+C, [VZues| < Cs + — (5.26)
It now follows from (5.24) and (5.26) that, for ¢ < h/3L4,
1 1 .
/ “n(|Vues — Vu|) + ¢ ‘V2u575|2 dx < (—7} (eCs) + 0553) HN Y (wifs) b (5.27)
{0<ys<1} € €
N-1( 4\, + 1 c
+ HY ! (wis\wy) 2L1e gn(sC’ngC)Jrs Cs + =)
In view of (5.17), (5.18), (5.21) and (5.27)
1 2 2 L ’ 2 N—-1(, +
EW(VuE,(;) + e |Viue5|” do < W(0,9(s)+19 (8)|"ds | H (wi) (5.28)
Q -L

1
+C (EU (eCs) + Csed ) +C (77 (eCs+C) + 205 + C) HNL (w;&\w(}") ,

and letting ¢ — 0% and then § — 07 yields, by (5.19),

1 L
lim sup limsup/ EW (Vues) + € ‘V2u576|2 dx < </ W (0,9 (s))+ g’ (5)|2 ds) HN (). (5.29)
Q -L

§—0t e—0t

Next we claim that

g g, sl =0 50

for any 1 < p < oo. Indeed, by (5.24) and (5.26) we have
/ [Vues — Vul do < ePCsHN ™ (wiy) 2h + HY 1 (wis\wi ) 2L1e |eCs + C|P — 0 as e — 0.
Q

Since ue s (z) = u (z) for |zn| > 2h, by Poincaré’s inequality we have that u. 5 — u in W? (Q;R9) .
To conclude the proof of this step, in view of Proposition 5.3 for every k € N consider a piecewise C!
curve gy : [~L, L] — R?, with g (L) = —gx (—L) = a, such that

L
1
[ w006+l ()P ds < K7+ 4. (5:31)
-L
If we denote by ue s, the function defined in (5.16) and corresponding to g, by (5.29)—(5.31) we have

1
1imsuplimsup1imsup/ W (Vucsi)+e ‘V2u876’k|2 de < K*HN-1 (), (5.32)
Q€

k—o0 d—0+ e—0t
and

Jim B T e ok =l e =0 (5.33)
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On the other hand, Theorem 4.1 entails

lim inf lim inf lim inf W(Vue(;k )+ & |Vucsi|” do > K*HN ! ().
k—oo §—0t e—0t Jo €
This, together with (5.32) and (5.33), allow us to diagonalize the triple-indexed sequence uc g5 to obtain
Ve 1= Ue 5(e),k(6(e)) satisfying
L —
and
lim W(VUE +e |Vt de = K*HN 1 (w).

e—0t Jo €

The case where the function « has the form
u(z) = —|zn|a ae in Q,

may be treated similarly. We omit the details.
Step 2: Finitely many interfaces. Assume that the number of interfaces is finite, that is

m
S(Vu)nQ =],
i=1
where , := {ac = an)€Q:an=1; } = cuz x {l;}, for some finite family Iy < --- <,
Fix 0 <h < fmin{liy1 —li:i=1,- — 1} and consider a piecewise C'! curve g : [ L, L] — R? as
in Step 1. We may now apply the constructlon of Step 1 to each interface, precisely we define

u (I) - w&,n (x)zE,i (1’)+(17w5,1 (x))u(x) for |xN*li| <2h’ai:1a"' 7m71a
0V w () otherwise,

where now v5,; is a smooth cut-off function such that ¢s; =1 in w(}"z X (li g,ll + %) and 15, = 0 outside
w;‘” X (li - %,li + %) , where for s > 0 we denote w;f = {:L' € RN=1: dist (2/,w;) < s} , and

TN —1; i

N7 (5 dg if Vu(z) =a®en
IR B _l‘g(ve) :
zei(z) = u (2, 1;) { iy N+llg(§) ds if Vu(z) = —a®ey.

As in Step 1, the argument leading to (5.28) now yields

1 g %
|2 (Vues) +2 [FPucs o < ( / W<o,g<s>>+|g'<s>|2ds>ZHN1 (w3.)
Q -L i=1

1
+C (g?? (eCs) + 0553) +C (n(eCs+C) +°C5+C) Y _HN! (w;;,i\w;i)

i=1

and the proof is concluded as before upon letting first € — 0%, then § — 0T, and finally k¥ — +oo where we
consider in place of g a realizing sequence {gx} for K*.

Step 3: Countably many interfaces. If the number of interfaces is infinite, we may proceed exactly as in
Step 2 of Theorem 5.5. We omit the details.

5.4 General domains

Let 7: R — R be an odd, C* function, with 7 (0) = 7/ (0) = 0, and such that 7 (t) = ¢ if [t| > 1. For ¢ > 0
define

ul (z) = et (I—N> a, uBP () .= —ul? (z), uB (2) :=e7 (@) a, uBA (z) = —utP (x).
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Figure 6: Construction for one interface in Step 1 of Proposition 5.7. The shaded region represents {0 <
s < 1}, and corresponds to Ay \A,s where Ay := wy x (=h/2,h/2) and ALy := wys x (=h/3,h/3). The
function u, s coincides with u?B outside Ay and with z. inside Aj5. A similar construction is used in Step
2, with u4® replaced by u24, and z. replaced by u.

Proposition 5.7 (Lateral matching) Assume that Q2 = w x (—h, h), where w C RN™1 is a bounded, open
connected set with HN =1 (0w) = 0, and let W satisfy (Hy), (Hz2) and (Hs3). Suppose, in addition, that
W is differentiable at A and B. Let u € W' (Q;R?), with Vu € BV (;{A,B}). Let {e,} C Ry be a
sequence converging to zero. Then there exists {u,} C W22 (Q;Rd) such that u, — u in WHP (Q;Rd) for
all p € [1,4+00), u, = u nearby xy = th,

F ifay >0,

_ ., FG / o _
Un () =uZ 7 (z) +u(2',0) nearby Ow x (—h,h) where Vu{ G ifzy <0,

En

F,G € {A, B},

and
. 1 212 *q/N—1
lim —W (V) + en |V, | do = K*HYN 71 (S (Vu) N Q).
n—+oo Jo Ep
Proof. In light of the argument used in Remark 5.4, we claim that given an arbitrary sequence {e,}
converging to 0%, it suffices to construct a double indexed sequence {u,, ; } satisfying the prescribed boundary
conditions, such that
kEr-iI-loo ngr—ir-loo ”uk,n - UHLI(Q%Rd) =0,

and
1
limsuplimsup | —W (Vug,,) + ¢ |V2uk7n‘2 dr < K*HN 71 (w).

k—+o0o0 n—+oo JO En

We fix one such sequence {e,}, abbreviated ¢ := ¢,,, and we divide the proof leading to the construction of
the double indexed sequence uy, 5, into two steps corresponding to the cases where Vu has either no interfaces
or one interface in the cylinder 2.

Step 1: Assume that Vu = sgn(zn)a ® ey in Q. Without loss of generality we may take u (z) = |zn]|a.
We proceed as in Step 1 of the proof of Theorem 5.6 until (5.16) which should now be replaced by

Ue,5 (z) 1= 5 () ze (x) + (1 — 5 (2)) ufB, (5.34)

where § stands for the elements d,, of a sequence converging to 0% as m — +o00, 2. (z) = fOxN g (f) ds as
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outside wy x (=%, L) where for s > 0 we denote w; = {2’ € w: dist (2/,0w) > s} (see Figure 6). In turn
(5.17) becomes

1 1
/ W (Vue,s) + ¢ |v2u€,5\2 da :/ “W (Vzo) ¢ |V | da (5.35)
Q¢ {ws=1} €
1
+/ -W (Vu?B)+5|V2ufB|2 dz
{vs=0} €
1
+ / W (Vues) +¢€ ‘V2u€,5‘2 dx.
{o<ys<1} €
Then (5.18) should be replaced by
1 L
/ W (V22) + [ V22| da < HY ! (wgy) / W (0,9(s)) +1g' ()| ds, (5.36)
{vs=1} —L

(5.21) continues to hold, while

1
[ W (vutt) e VAP de <0 @) [ W (s a) + 7 ()P dr - (53)
{¥s=0} -1
<CHN ! (w\wy) -

To estimate the right hand side of (5.21) we replace (5.22) with
Vs — Vu| < |Vis| |2ze — ulP| + 95 |Vze — V| + (1 — 15) | Vulf — Vul, (5.38)
[V2uc 5| < |V20s| |20 — ulP| + 2| Vps| | V2o = VulP| + s V22| + (1 — ) [Vl P

Let Ly := max{1,L}. Then for |zx| > cL; we have u® = |xx|a and so from (5.23) and (5.38) the bound
(5.24) continues to hold for |z x| > eL;. Moreover

IV (ud? —u)| < |7 (i%v) a‘ +IVullo <€, |V2u?| < % T (i%\[)‘ < g (5.39)
for 0 < |zn| < eLq, and thus
el
|ze (z) — ulP ()| < |2 (¢/,eLy) — ulB (z,eL1)| —|—/ |V (2 — ufB)‘ dey <eC. (5.40)
—ely

Hence, from (5.25), (5.38), (5.39) and (5.40) the estimate (5.26) is still valid for |xy| < eL;, while (5.27)
becomes

1 1
/ -n(|Vues — Vu|) + ¢ }V2u€,5}2 dx < <—77 (eCs) + Cg€3> HN Y (W) 2R (5.41)
{0<ys<1} € €

1 C
4+ KN (wg\w;(;) 2L1e (gn(ng +C)+e <05 + 5_2>) .

In view of (5.35), (5.37), (5.36), (5.21) and (5.41), we now have
1 L
[ W (Vues) 4 2 |[PPucsl? do <CHY ! (\wgy) + ( | wogen+ig <s>|2ds> HY ()
Q -L

1
+C <g77 (eCs) + Cg€3>
+C (n(eCs + C) +£°Cs + C) HN 1 (wy \wyg)

and letting e — 07 and then § — 0T yields, by (5.19),

1 L
1imsup1imsup/ EW (V’U,E,(;) +e¢ |v2u€,5‘2 dr < HN—l (w)/ 197 (0,9 (S)) + |g/ (S)|2 ds.
Q —L

6—0t -0t
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We can now continue the argument of Step 1 in the proof of Theorem 5.6 from (5.29) onwards.
Step 2: Assume that Vu = A =a ® ey in Q. Without loss of generality we may assume that u () = azn.
Fix § > 0 and let 15 be defined as in Step 1. Define

ue,s () = 5 (x) u (2) + (1 = s (2)) uf ™ (x) .
AA

For |xn| > € we have v (z) = u(x) and s0 uc5 () = u(x). Since 15 = 1 in wyy x (f%, %) and 5 =0

outside wy x (—%, %) , for 0 < e < h we have

1 1
/ “W (Vues) + € [V2ue | da g/ —W (Va4 4 ¢ | V24| de (5.42)

Q¢ (W\wj )x(—ge) €

1

+/ ~W (Vues) + ¢ ‘V2u575|2 dzx
(wg\wgé)x(fe,s) €
1
< CHN! (w\wy) +/ —n(|Vues —a®en|) +¢ |V2u6,5‘2 dz,
wg\wgé)x(fe,s) €

where we used (5.37) (which continues to hold, provided we replace the derivatives of 7 (|-|) with those of
7(-)) and (5.20).
To estimate the last integral on the right hand side of (5.42) note that
Vue,s (x) = Vu (@) < [Vis ()] [uf? (2) —u(@)] + v (2) [Vul (2) = Vu (2)], (5.43)
[V2ue s (2)] < [V205 ()] [ (&) — w (@)] + 2|V s (2)] [Vt () — Vau (2)] + 65 (2) | V20l ()]

The bounds (5.39) and (5.40) are still valid for |zy| < e, with L; := 1 and u2® replaced by u24. Hence
from (5.43) we deduce that (5.26) holds for |zx| < ¢, and thus by (5.42)

1
/ ~W (Vueys) +e (V2u.s|* do < CHV ™ (w\wy ) + HY ! (w; \wis) 2 (1 (€C5 + C) + £2C5 + C)
Q
and by (5.19), letting € — 0% and then § — 07 yields

1
lim sup lim sup/ W (Vues) + ¢ |V2u5,5‘2 dx = 0.
Q€

6—0t -0t

The argument of Remark 5.4 brings the proof of this case to a closure. The remaining two cases where
Vu=-a®en in Q and Vu = —sgn(zy)a ® ey in ) are treated in a way similar to Steps 1 and 2. We
omit the details. m

In preparation for the main result of this section, Theorem 5.10, we establish the following inequality for
level sets.

Lemma 5.8 For each t € R let Qy :={(2',xn) € Q: xny =t} denote a horizontal interface of Q. Then

1i5ni%1ip2i€ _i HN-L (Qs4¢)ds < HN-L (ﬁt) )
Proof. Write Q; = @ x {t}, fix § > 0, and consider an open set ¥ DD @ such that
HN LS x {t}) < HN T (Qr) + 6.
We claim that if € is sufficiently small then

{zeQ:|on—t|<e}CEX({t—et+e).

Indeed, if this was not the case then there would exist a sequence {z,} C Q, with z,, = (2}, (z,) ), such
that
(zn)y — tand 2], ¢ 3. (5.44)
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By extracting a subsequence, if necessary, we may assume that z,, — (2/,¢). But then (z/,t) € Q; C ¥ x {t},
which is in contradiction with (5.44) since ¥ is open. Hence the claim holds, and in turn by Fubini’s Theorem

HN 1 (Quy)ds = |[{z € Q: oy —t] <e}| < |E x (t—e,t+e)| = 26HN "1 (D x {t}).

—&

Hence L
% HY " (Qupe)ds <HNTH(E x {t}) < HN TN () + 6,
and by letting first ¢ — 0% and then § — 07 we conclude the proof. m

The next result is a generalization of the Isoperimetric Inequality (see [4, 13]).

Theorem 5.9 Let Q@ C RY be an open, bounded connected domain with Lipschitz boundary. Then there
exists a constant Ciso, depending on N and on (), such that for every set E C ) of finite perimeter there
holds )

min {|E|,|Q\E[}' "~ < Ci Perq(E). (5.45)

Proof. By Poincaré’s inequality there exists a constant C (N, ) such that

/ lv — ’UQlN/(N_l) dx < C|Dv| ()
Q

oA
v = — | vdx
12 Jo

for all v € BV (€;R), where

and |Dv| () is the total variation of Dv. If we take v := xg then vg := % and so
N/(N-1)
- E
CPerQ(E):C|Dv|(Q)2/ |'U7'UQ|N/(N 1)d:c:/ XEH dx
Q Q

—N/(N— N/(N— —N/(N— N/(N—
= Q| NNTY (] — | BN NI Bl 4 (N pIN D 10\ B
> 10NN min {| B[, Q\E|} TV (|E| + [Q\E])
=1 YN Y min {| B[, |Q\E[} V.

Setting Ciso := C(N, ) |Q|1/(N71) we conclude the proof. m

Theorem 5.10 Let @ C RN be an open, bounded, simply connected domain with Lipschitz boundary. As-
sume that W satisfies the conditions (Hy), (Ha)' and (Hs). Suppose, in addition, that W is differentiable
at A and B. Let u € WH' (Q;R?), with Vu € BV (Q;{A, B}). Then

I — lim I (u;Q) = K*Perq(FE),

e—0t
where Vu(z) = (1 — xg (z)) A+ xg (v) B for LY a.e. € Q.

Proof. Just as in the proofs of the previous I'-limit results, in view of Theorem 4.1 and of Remark 5.4 it
suffices to show that given an arbitrary sequence {e,,} converging to 0" we may construct a double indexed
sequence {un x} such that

kEr-iI-loo nll»r}rloo Huk,n - UHLI(Q%Rd) = 0’

and

1
limsuplimsup | —W (Vug,) +¢ |V2uk,n‘2 de < K*HN 7! (w).
k—+o00 n—4oco JQO En

We fix one such sequence {e,}, abbreviated ¢ := ¢,,, and we divide the proof leading to the construction of
the double indexed sequence uy, ,, into four steps.
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Figure 7: Construction for the case of one hyperplane, with continuously varying interface area, in Step 1 of

Theorem 5.10. The functions ui s and ug s used in the two cylinders have been constructed in Proposition

BB

-7, respectively. The shaded region represents

5.7, and on the cylinder boundaries agree with «2? and u
the set F. 5.

Step 1: One hyperplane— case 1. We assume first that
S(Vu)NQ C Qo :={z=(2",2n) €Q: zn =0}

and that (see Figure 1)
t— HN71(Q) is continuous at ¢t = 0. (5.46)

Then we may write
QO = U w; X {0},
i=1

where the open sets w; C RN ~! are pairwise disjoint and connected. Since € is bounded we know that
o0
ZHN_l (wi x {0}) < oc.
i=1

For fixed § > 0, standing for an arbitrary element of a sequence {dx} converging to 0%, choose M > 1 so
large that

o0

> HN T (wi x {0}) <4, (5.47)

i=M+1
and for each i =1, -, M, let w; 5 CC w; be such that

HY L (wi\wis) x {0}) < % (5.48)

Since w; 5 x {0} CC 2 there exists h > 0 such that the cylinders w; s X (—h,h) CC Q for eachi=1,--- , M
(see Figure 7). In each cylinder w; s x (—h, h) we may apply Proposition 5.7 to obtain sequences {ué 5} C
W22 (wi,g x (—=h,h) ;Rd) such that u;(; — u in W2 (Wi,é X (=h,h) ;Rd) , u;(; = u nearby ry = +h,

F inw;s x (0,h)

G inw;sx(=h,0), FG e {4, B},

ul 5 (x) = uf' (x) +u (2',0) nearby dw; s x (—h,h), where Vu = {
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and

1 _ .
lim / W (Vul ;) + ¢ |Vul 5|2 dr = K*HN 71 (S (Vau) N (wis x {0})). (5.49)
e—0t wq,ng(th,h) g ’ ’
Define
ul 5 (x) ifrew,sx(0,h),i=1---,M,
Vs (2) = ud (@) +u(@,0) if z e\ UM, wis X (—=h,h)) and Vu (z) = A, (5.50)
uBB (z) +u (2/,0) if x € Q\ Uf‘il wis X (—h,h)) and Vu (z) = B.
We claim that {ve s} C W (Q;R?), ve5 — uin L (©;RY) and
1
limsuplimsup/ -W (Vues) +e€ ‘V2v5,5|2 de < K*HN 1 (S (Vu)n Q).
5§—0t e—0t JQ €
Define
M
E.s:= {x € 0\ <U wi,s X (—h, h)) Den] < 5} .
i=1
Since uf'% (z) +u (2/,0) = u (2) for |zn| > & we have
1 2 M 1 2
/ W (Vues) +€|VPoes| do :Z/ W (Vuls) + e |Viul 5| da (5.51)
Q€ i—1 Y wi,s X(—h,h) €

1
+/ “W (Voo s) + € [V2o5]° da
Ea,é €

M 1
:Z/ “W (Vi ) + e |V2ul 4|7 do
=17

iax(=h,h) €
1 , TN " TN\ |2

+ - w (O,ir (i—) a) + |7 (i—)‘ dx.
€ Je. 5 € €

By Fubini’s Theorem we have

%/EM W (O,ir’ (i%v) a) +

. M
2 (i%) ‘2 d < Cé/ <HN1 (Qé) _ ZﬁNfl (wi,6)> ds
€ i=1

M
1 €
=C <g 8 HN 1 (Q,) ds — 225“1 (wi75)>

20 (HN‘I (Q0) = Y HN ! (wis x {0})>

i=1
as € — 07, and where we have used (5.46). By (5.47), (5.48), (5.49) and (5.51) we obtain

M
1
1imsup/ EW(VUE’(S) +e¢ |V2U515|2 der < K* § HN—I (S (vu) n (wi,é « {O}))
Q

e—0t =1

+C Y HY T (wi x {0}) + C6
i=M+1
< K*HN71(S (Vu) N Q) + C6.

It now suffices to let § — 0F.
Step 2: One hyperplane— case 2. Next we remove condition (5.46), and thus we only assume that (see
Figure 2)

S(Vu)yNQ C Qo :={z=(2",2n) €Q: any =0}.
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Figure 8: Construction for one hyperplane in Step 2 of Theorem 5.10. The function v. s, which is used
everywhere except for the set By := Z5 x (—h/2,h/2), is the one constructed in Step 1. Inside B,; := =55 X
(—h/3,h/3), the limit u is used directly. The set F; ;5 is the shaded region. The two boxes w; 5 x (=h/2,h/2)

and w, 5 X (—h/2,h/2) are also shown.

Write
o00Nn{z=(a',any) eRY : a2y =0} = (Ex {0}) UE,

where = is an open subset of RN =1 and HV~1 (E) = 0. Fix § > 0 and consider a smooth cut-off function

s such that ¥s = 1 in 25 x (—%, %) and s = 0 outside I X (—%,%), where for s > 0 we denote

E; = {a’ € E: dist (¢/,02) > s} (see Figure 8). For x € 2 define
we s (2) = s (2) u (@) + (1 = 5 (2)) vey5,
where {v. s} is the sequence defined in (5.50). Note that u € W22 (QNE; x (—£4,2);R?). Set

M
Fls:= {m e\ <(Eg x (—h, 1)) U | (wis x (h,h))) an| < 5} .

=1

Using (5.51) we have

1 1
/ W (Vwep) +e V2w 5|* da :/ SW (Ve s) + ¢ [V 5| da
Q {

Ps=0} €
1
+ / =W (Vwes) +e |V2w575‘2 dx
{o<ws<1} €
M 1 , S o2 1 x x 2
SZ/ W (Vuls) +e|VPuls| do+ —/ w (O,ir’ (i—N) a) + |7 (i—N>‘ dx
=1 Jwisx(—hh) € ’ 7 € JF.s € €
(5.52)
1
+/ “W (Ve g) + ¢ |V, 5| da.
{o<ws<1} €
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The second integral on the right hand side of (5.52) may be estimated as before to obtain
. 1 (| TN

limsup — w (0, +7 (:l:—) a) +
e—0+ € F. s €

. M
< limsup C% (HN_I (Q) — LN (25) - ZEN_I (%‘,6)) ds

e—0t =1

1 13
= Cli = Noh(@Qo)ds —2LV M (Ey) —2) LN (wy,
im sup (5 /%H (Q) ds Z (wis)

e—0t

7 (i%N) ‘2 dz (5.53)

M
§20<HN P(Q0) - LV (ES) = Y HN T wa{O}))

=1

§2C<HN (E\E) x {0} + > HNl(wix{O})-i-(S),

1=M-+1

where we have used Lemma 5.8.

The estimate of the third integral on the right hand side of (5.52) is very similar to the proof of Step
2 of Proposition 5.7. Indeed, for |zn| > ¢ we have uf'“ () + u (2/,0) = u (x) and so w. 5 = u in the set
{zeQ:0<ys(x) <1, |:cN|25} Hence

1
/ EW(Vwaa +¢e|V? w55| dx</( ) 577(|Vw575—Vu|)+5‘Vg’5w|2 dx, (5.54)
{o<ys<1} 25 \Eg5 ) X (—¢,)

where we used (5.20) and we have extended u to all of RY as an affine function. The estimates (5.38), (5.39)
and (5.40) continue to hold for z € (25 \Z55) x (—¢,¢), with u2P replaced by uf“. Hence from (5.38) we
deduce that (5.26) is still valid for « € (25 \E3;) x (—¢,¢), and thus by (5.52)-(5.54) we obtain

lim sup EW(VwE,; +5‘V2w55| de < K*HN71(S(Vu) N Q)+ C6 + HV 1 (E5\255)2(n(C)+C).
e—0t Q

Letting 6 — 0% concludes the proof.
Step 3: Finitely many hyperplanes. Assume that

M
S(VuynQc |,

i=1

where Q, = {x = (2/,2n) € Q: zn =1;} = w; x {I;} for some finite family I3 < --- < lp;.

Fix 0 < h < imin{ljy1 —l;: i=1,---,M —1} and let {e¢} C Ry be a sequence converging to zero.
Define

Q' ={2ecQ: vy — L] <2h}.

By Step 2 applied to Q' we may find sequences {u’} C W22 (Q;R?) such that ! — u in W2 (4 RY),
ué = u nearby xy =1[; £ h, and

1 . ) .
lim [ =W (Val) +e |V2ul|* do = K*HN 7 (S (Vu) N Q7).
e—0t+ Jqi €
It suffices to define , ]
e (z) = ul () ifxeQi=1,---,M,
Y w(x)  otherwise.
Then {u.} C W2 (Q;R?), u. — win W2 (;RY) | and
lim W(VUE )+ & | V2uc|* de = K*HN1 (S (Vu) N Q).

e—0t Jo €
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Step 4: Countably many hyperplanes. Assume that
S(VU)QQ: Uwi X {li},
i=1

where w; C RN~ are connected open sets with 0 (w; x {l;}) C 9Q and {l;} is a sequence of real numbers
(not necessarily distinct). Fix 0 < § < min {1, 5[} . Since

HY (S (Vu)n Q) = iHN* (wi x {I;}) < o0, (5.55)

there exists an integer M = M (§) such that

o0

> HN T (Wi x {li}) < L5,
i=M+1 o

N
where ¢y := max{l, C’i;\;l} and Cjg, is the isoperimetric constant introduced in (5.45). As  is simply

connected, for eachi = M +1,--- | the set Q\ (w; x {l;}) may be written as the union of two open connected
disjoint sets E; and Q\E;, where |E;| > 1 |Q|. By Theorem 5.9

1 N-1 N N—1 N 1
min {|E;], [Q\Eil} < coH™ 7" (OB NQ)TT = oM™ (wi x {L:})¥T <6 < 5 9],
and so |Q\E;| < coHN 71 (w; x {ZZ})% Set uM := u, and for each i = M +1,--- , define u’ as u’~! in the

set F;, while we extend u’ as an affine function outside E;. Thus Vu! is continuous across w; X {l;} and

M 00
S(veynQc | [Jwi x| ul U wx{i}]. (5.56)
j=1 j=i+l

Clearly Vu' € BV (;{A, B}) and by (5.55) and (5.56)
su_pHN_1 (S (Vu') NQ) < oo.

In addition, u® = u on Q\ (U;’;MH (Q\Ej)) =(j2ar1 By, with

(oo} (oo} N (oo} Q
N Ei| =10 —co Y HY M wx{LHTT 219 —co Y HY ' (wyx {i}) = % (5.57)
j=M+1 j=M+1 j=M+1

By Poincaré’s inequality we can extract a subsequence (not relabelled) converging in W1! (Q;Rd) to a
function v, with VoM € BV (Q;{A, B}),

oo
vM = on ﬂ E;, (5.58)
i=M+1
and

M
S(voMynac | Jw < {1}

j=1

In order to assert the latter inclusion, consider a point xy ¢ U]Ail w; x {l;}, and find r > 0 such that
M
Q (zo,m) C O\ [ |Jwj x {13}
j=1
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If i is large enough so that HV ! (w; x {I;}) < 7V ~! then, clearly, and in light of (5.56),
Q (zo,m) NS (Vu') = 0.

We deduce, therefore, that Vut € Whoe (Q (xo,7) ;RdXN) and thus VoM e W (Q (xo,T) ;RdXN). In
particular, zg ¢ S (VUM) )

Let {e} C Ry be a sequence converging to zero. By Step 3 we may find sequences {Ué‘/f} c w22 (Q; Rd)
such that véw — oM inp W2 (Q;Rd) ase — 01, and

M
im [ Lw (Vo) + | V20 " de = K*HV (S (Vo) nQ) < K* ST HV 7 (w; x {1}).
e—0t Jo € i=1

In turn

oo

. . 1 M 2 M|? * N—1¢ .
111\/1}1:}210p€1ir(r)1+ QEW(VUE ) +e| VM| de < K ;H (wi x {l:})

= K*HN=1 (S (Vu) N Q).

Since vM — vM in W12 (Q;Rd) as € — 07, by means of a standard diagonalization process it suffices to
prove that v™ — w in L' (Q; Rd) as M — oo. By construction we have

/ ‘VUM —Vu‘da: S/ ‘VUM —Vu‘da:
Q o

a1 Q\E:

<2la®en|

<o S o

i=M+1

3 o

i=M+1

<c Y ETT<e Y HY wix {1}) < ¢,
i=M+1 i=M41

and by Poincaré’s inequality and (5.58) we obtain
/ "UM—U‘CZJS §C~'/ |VUM—Vu|dx§ C~'5,
Q Q

where the Poincaré constant C' may be taken independently of § in view of (5.57). It now suffices to let
J—0". m

6 I'—limsup: the upper bound. The symmetry hypotheses.

We introduce the notation

€=, En) ER X xRY ¢ =(&, - En—1) R x- xR
N —— N ——
N times N—1 times

so that € = (¢/,&n) € RX(N=1) x RY, Throughout this section we assume that
(Hy) W is continuous, W (¢) = 0 if and only if £ € {A, B}, where A = —B = a®ey;, for some a € R? \ {0} ;

(H2)" there exist an exponent p > 2 and a constant C' > 1 such that
1
Sl —C<W () <O el +1)

for all £ € R4XN;
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(Hy) there exist constants p, v > 0 such that

1 .
SlE— AP SW(© <qle- AP if E-Al<p,
1 .
;I«E—BI”SW(Q <7ylg-BIP if |¢-B]<p.
(Hs) W is even in each variable &;,i=1,--- ,N—1,that is W ({1, , =&, -+ ,én) =W (&1, , &, -+ ,EN)
foreachi=1,--- N — 1.
Hypothesis (H4) may be improved as

(H;)" there exist a constant p > 0 and a convex function g : [0,00) — [0, 00), with g (s) = 0 if and only if
s = 0, such that g is derivable in s = 0,

g(2t) <cg(t), (6.1)

forall 0 < t < p,

g(IE=A) =W () <cg(l§—A] if [ A <p,
and

g(§=Bl) =W () <cg(l€—B|) if |- B|<p,

for some constant ¢ > 0.

Condition (6.1) is called the doubling condition — it prevents g to be too degenerate near ¢ = 0, precisely,
it is satisfied if g (t) ~const.t? as t — 0T, for some p > 1, while it does not hold if g grows exponentially
near the origin, i.e., g (t) ~const.e”/* as t — 0.

Remark 6.1 In what follows, and without loss of generality, we will consider the model case where A =
—B =a®ep. It is easy to check that (Hz)"” and (Hy) yield

W) > Cilg')P
for all £ € RN and for some constant C; > 0. Moreover, we claim that
W(§) < Ca(W(n) + 1§ —nl"), (6.2)

for all £, € RN and for some constant Cy > 0. Indeed, assume by contradiction that (6.2) does not hold.
Then there exist two sequences {&,}, {7} C R¥¥ such that

W (&) >n (W () + 160 — mal”) - (6.3)
We have by (Hs)”

Ol +1) 2 W (6) > n (W (1) + 16w = 1al") 2 1 (5 1l = 4 5 I =l

1 P
Zn<2plc |§TL| _0)7
1

where we have used the inequality |a|” + [b]” > 5= |a — b]” . This clearly implies that the sequence {,} is
bounded, and by (6.3) it follows that W (n,) + |&, — 1| — 0. In view of (H;) we may assume, without loss
of generality, that 7, — A. For n sufficiently large the quantities |&, — A|, |n, — A| are so small that (Hz)
may be applied, and (6.3) yields

Y |§n - A|p > W (gn) >n (W (7771) + |€n - 77n|p)

1
zn<;mnAW+wnmP>

1 ) 1
2p1nmm{1, ;} &, — AP,

Y

which is clearly a contradiction for n large.
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For simplicity we will present the proof of the analog of the results of Section 5 first under hypothesis
(Hy), and then on Section 7 we move on to the general case where (Hy)" holds.

6.1 Characterization of K*
In this subsection we prove that under conditions (Hy), (HQ)”, (Hy) and (Hs)

1
K* = inf{/ LW (Vo) + = [V?0|* do: L > 0,0 € W™ (Q;RY),
0 L
1
Vv = +a ® ey nearby zny = :l:§, v periodic of period one in :L'I} .
The next two propositions will establish that, for cubes, realizing sequences may be taken periodic in the

transversal directions, and that there is a matching of vertical boundary conditions, precisely:

Proposition 6.2 (Vertical matching) Assume that W satisfies (H,), (Hs)" and (H,). Then there exist
sequences {e,} C Ry, {cn} C R and {z,} € W22 (Q;R?), such that e, — 0T, ¢, — 0, 2, — |on|a in
Wi (QiRY)
1 1
zn (x) = —x N a nearby xy = st zn (k) = 2N a+ ¢, nearby xn = 2 (6.4)
and )
lim —W(Vzn)+€n|v2zn|2d:c:K*.
n—-4oo Q En
Proof. By definition of K* there exist sequences {&,,} C Ry, {un} € W22 (Q;R?), such that &, — 07,

Uy — ug = |zy|ain L' (Q;R?) and

1
lim [ —W (Vun) + 0 | V2u,| do = K*.
n—-+4oo Q En

We abbreviate € := ¢, and w. := u,. Due to Theorem 3.1 and Remark 3.2 (ii), we may assume, up to
extraction of a subsequence, that u, — u in WP (Q;Rd) . Partition Q" x (%, %) into [ﬂ horizontal layers

of height [%] -t %. In view of Remark 4.4, choose one such layer, L. = Q' x (95 — [l} -t %, 95) , such that

€

1 1
H/ gW(wensIV?uEIQHWEfa®eN|”+|uefuol”dx (6.5)
Ls

1
</( )EW(VUa)+E\V2ua|2+|Vue—a®€N|p+|ue—U0|pd$=1%—’0-
(b

€

In L. select a height 2. € (95 - [l} -t %, 95) such that

5 éW (Ve (2, 22)) + € |V2uz (&, 20) P + Ve (2!, 22) — a @ exl” (6.6)
+ Jue (2, 22) — uo (27, z)|F do’ < 6ar.
First matching: Set
Ve () = uo () + Ue (z) + ¢e (2N) (ue (x) — uo () — Ue (7)),

where @, (z) = uc (2, 2:) — @ (2e), up(z) =: u(zy), and let ¢, be a smooth cut-off function such that
{0<p. <1} C L, p=1lifay <0 —[L]' L, p.=0ifan > 6., and

C C

We claim that
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(i) [y ve = uol” dz — 0;
(ii) %‘[Le Vv —a®ey|’ dz — 0;
(iii) fLa W (Vve) do — 0;
(iv) [, € ‘V2v5‘2 dr — 0.
It is easy to deduce (i) from (6.5) and (6.6). Now

1 1 1 1
- |Vv5—a®eN|pdx§C’/ = |Varue (2, 2)[° 4+ = [Vue —a @ en|’ + — Jue —ug — | dz (6.7
e Jr. L€ € ept

1
§C’{/ |V ortue (x’,z5)|pd:c’+—/ |Vu€a®eN|pd:c}
QI E LE
1
< C{ |Vue (2, 2.) —a @ en|’ da’ + —/ |Vue — a®eN|pdx} -0
Q' € L.
by (6.5) and (6.6), where we have invoked the Poincaré’s inequality

[ue —ug — e|” do < CeP IV (u: —a®epn)|’ dz (6.8)
L. L.

due to the fact that (ue — ug — @) (2, 2.) = 0, and using the identity | — Vuo|P = (|¢'|? + [én £ a|2)p/2. In
addition,

1 1 1
E/ W (Vue)dx < - C|Vve —a®eyPdz+ = C(1+|Vu|?)dx
L.

€ /Lsﬂ{VvE—Vu0<p} € /LEF‘I{|VU5—Vu02p}
C
< —/ Vv, — a® enl|? dz,
g L.
where we have used (HQ)//7 (Hy), and the fact that
1
LY (L. N {|Vv. —a®en| > p}) < —p/ Vv — a®enl|? dz.
P JL

€

By (ii) we easily deduce (iii).
Finally,

/5|V2v5|2d:c§0/ E‘Vi,us(x’,z5)|2+5|v2u5‘2+%|Vu€—a®eN|2
L.

€

1 2 1 _
+E|Vx/u€(ac’,ze)| +§|u6—uo—u6|2dm
1
|V2u€‘2dx—|—/ E|Vua—a®eN|2dx

<C {52/ | V2 ue (2, ZE)‘Q da’ + 5/

Q' L. R

2 1 2/p
+/ Vaorue (f, 22)|” da’ + — P27 (/ |ue — up — e|” dm)
Q' € L.
2 9 1 2/p

=¢ E2/ |Varue (2, 2)[" da’ +5/ |V2ue|" dx + (5/ [Vue —a®@enl” dx)

Q' L L.

2/p
—l—( [Vue (x',za)—a®eN|pdac') dm'} -0
Q/

€

by (6.5), (6.6), Holder’s inequality, and (6.7), (6.8).
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Second matching: Set
we () == ug + cc + ¥ (xn) (Te — ce),
where, by (6.6),

Ce 1= / Ue (2, z.) dz’ — 0,
and v is a smooth cut-off function such that ¢ = 1 nearby xny = 6. (< %) , ¥ =0 nearby zy = %, and

[Pl < "]l <e

We claim that
(1) fQ’X(OE,%) |w€ — u0|p dx — 0;

(ii) fQ'x(ea ) LW (Vw.) dz — 0 or, as seen before, %fQ'x(e ) |Vw, —a® ex|? dz — 0;

1 1
i) €79

2
(iil) lex(ea,%)f\V%e\ dr — 0.

It is clear that (i) is a consequence of (6.6). To prove (ii) and (iii) we notice that

1 1
- [Vw: —a®ey|’do < C= Ve (27, 22) [P + |ae — ce|” do
& JQrx(6e,%) € JQrx(6:,%)
1
<C= | |Vaue (2, 2)|" do’
E QI
1
<C [ =W (Vue(2/,2:))da’ — 0
Q' 9

by (6.6), and where we have used Poincaré-Friedrichs’s inequality and Remark 6.1. Furthermore, also by
(6.6), and using Holder’s inequality

/ 5|V2w5}2d:c§0/ 5|Vi/ﬂ5 (ac’,zg)|2+&:|VI/u6 (m’,z€)|2d:c
Q'x(0:,%) Q' x(0:,%)

2/p
SCE{/ | V2, ue (ac',ze)fdac'—i— (/ [Vu, (x',za)—a®eN|pdac') } — 0.
Q’ Q’

To conclude the proof, note that the sequence

ue if xy < 6.
Uei=1{ w, ifg.—[1]”
we if xy > 0.,

satisfies condition (6.4) with

1 1
limsup/ EW (VU.) +¢ ‘V2U5‘2d$ < lim EW (Vue) +¢ ‘V2u€|2 de = K*.
Q

e—0+ e—=0% Jg

This procedure pins down the boundary conditions at x = 0, and nearby zy = % we have U, = ug + ce.
Now we repeat the argument in Q' x (,é,o) with the obvious adaptations, in order to change U, on the
bottom half of the cylinder so that the new field V; is equal to ug + ¢ on top and to ug + ¢z on bottom. It

suffices to set z. := V. — C., with C. := ¢ — ¢Z and to invoke Theorem 4.1. =

Proposition 6.3 (Transversal Periodicity) Assume that W satisfies conditions (Hy), (Hz)", (Hs) and
(Hs). Then there exist sequences {en} C Ry, {u,} C W2 (Q;R?), such that e, — 07, uy, — |zn|a in
Lt (Q;Rd) , Vu, = +a ® ey nearby zn = i% (resp.), uy is periodic of period one in x', and

1
liminf [ —W (Vun) +ep |V, |” do = K*.
n—-+00 Q En
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Proof. We claim that we may find sequences {¢,} C Ry, {v,} C VVli:o (RN;Rd) , such that €, — 01,
vp (+,2N) is 2Q’-periodic for all zy € R, Vv, = +a ® en nearby zy = i% (resp.), and

1
lim — W (Vo) + &0 | V20| dz = 2V 1K™,

oo Jorx(—4,1) En

lim |vn (2) — |zN|a| dz = 0.

n—oo 2Q’X(*%,%)
If the claim holds, then extend v, linearly to 2Q and define u, (z) := v, (2z) for « € 2Q. Then {u,} C
W2 (RN;Rd) , Up, (-, xn) is Q'-periodic for all zy € R, Vu,, = +a ® ey nearby xy = i% (resp.), and

loc

2 n
lim [ =W (Vuy) + % V2u, | do = K,

n—o00 Q En

lim |un(x) — |zN|a| dx =0,
n—oo
thus completing the proof.
We divide the proof of the claim in two steps, where, as before, for simplicity of notation we write € := &,,.

Step 1: The two dimensional case N = 2. In view of Lemma 4.2, consider sequences {¢} C Ry, {u.} C
W22 (Q;R?), such that € — 0%, ue — ug := |z2|a in L' (Q;R?), and

1
lim —W(VUE)+€‘V2UE|2d:U:K*.
e—0+ Q¢

By (Hg)” we may assume, without loss of generality, that {u.} C W22 (Q;Rd) N C? (Q;Rd), and by
Proposition 6.2 that Vu. (z) = £ a ® ey nearby zo = +1 (resp.). By Theorem 4.1 we have

1 1
K*= lim [ W (Vu.) +¢|V?u.|" de > 1iminf/ “W (Vo) + €| V.| dz
=0t Jg € e=0" JQ\L, €

>k (<5 s <o) =50 (1-2).

1 2
1imsup/ W (Vu,) +5‘V2u6|2 dr < K*=.
I, € m

e—0t m
Divide (—%, —% + %) X (—%, %) into [ﬂ vertical strips of horizontal width % [ﬂ -t , and proceed symmetri-
callyin (3 — L, 1)x (-1, 3) . Order these strips in pairs (R;m,i,R:’mJ) with R;m,i c(3-2x(-3,1),
R_,..C (—%, —% + %) X (—%, %) Then for all £ > 0 sufficiently small we have
(2] ) , 5
Z —W(VUE)+5}V2uE| +mP |Vue — Vugl? + |ue — uo|dz < K*—, (6.9)
=1 R;m,,iUR;m,,i € m

where we have used the fact that u. — uo in W7 (Q; R?) (see Theorem 3.1 and Remark 3.2 (ii)). Choose
R , with ¢ =i (e,m), such that

e,m,i)

one pair (R7

£,m,1’

1 3 (1]}
/ —W(Vu€)+5|v2u5|2+mp|Vu€fVuo|p+|u€—u0|d:c§K*— {—] . (6.10)
RY URZ € €

m

e,m,i e,m,i

For simplicity, from now on we denote RT =: R;"’m = (be,ms Cem) X (—%, %) and R_,

e,m,t

= Re_,'m =
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(—Ceymy —bem) X (—%, %) . Since

ﬂcm /_5 EW (Ve (2)) + e |V2ue (2)|* + mP |V (ue — uo)[” () + |(ue — uo) ()]

e,m+tce,m

N

1
+ W (Vue (—a1,2)) + & [V2ue (—ar,22)| +m? |V (ue = up) (—1,22)]”

+ [(ue — o) (—301,%2)@ dr < K2 [1]_17

m | e
with ¢z, — b“ﬂ% = %% [%} -1 , there exists ac m, € (W, cam) such that
3 I1 ) 2
) EW (Vue (aem,x2)) +¢ |V Ug (agym,:cg)‘ + |(ue — uo) (Ge,m,T2)]| (6.11)
-3

+mP [V (ue — o) (ac,m, x2)|” +mP |V (ue — o) (—ae,m, z2)|"

1
+ EW (Vue (—aem,x2)) + € ‘V2u€ (—aem, m2)|2 + [(ue — uo) (—ae,m, 1’2)|:| dry < 6K*.

be m~+cCe.m be,m+ce,m
Now (—a&m,—aa,m—i—ﬁ) C (—Ceym, —be,m) because agm € (%,c&m) and —=mo==m — b, =

-1 . . .
%% [ﬂ . We will now modify u. on (—aem, —bem) X (—%, %) so that the new sequence will match u.
near ¥y = —@em + 5, hence near —be ,,,, and will coincide with u. (—ac m,-) near r; = —a m. Let pc ., be

a smooth cut-off function such that ¢, ,, =1if 21 > —acm + %, Ye,m = 01if 21 < —ag m, and

cm ch
el < S Nl < Zo

Define
We,m (€) 1= Pem (1) Ue (&) + (1 — @e.m (21)) Ue (—Ce,m, Z2) .

Then {wem} C W2 (Q;RY) , and Ve, (z) = £ a ® en nearby zz = +3 (resp.). We show that

1
lim sup lim Sup/ EW (Vwe,m) +¢€ |V2w€’m‘2 dx < K*, limsuplim sup/ |we m —uo|ldz =0.  (6.12)
Q Q

m—oo  e—0t m—oo g—0t

If (6.12) holds, and repeating the argument now nearby x1 = ac,,, then after a diagonalization procedure

and invoking Theorem 4.1, we can find a subsequence €, — 0" and a sequence {w,, } C W% (Q; Rd) such
1

that wy, = Wy, (Xam, x2) nearby x; = :l:% resp, Vwy, () = £a ® ey nearby x3 = £5 (resp.), and

1
lim [ —W (Vwn) +em [V de = K%, lim [ |w, —uo|dz = 0.
m—00 Q

m—0 Jo Em

Construct by reflection about 1 = % a new function, still denoted w,,, x1-periodic with period 2. Precisely,

for x1 € (%, %) , Ty € (—%, %), set Wi (1, 2) := wp (1 — 21, T2). Since the problem is translation invariant,

for simplicity of notation in what follows we identify w with its translation (z1,x2) — w(z; — 1/2,22), and

in this way we work with periodic functions with period (—1,1) x (f%, %), such that

1
lim —W(Vwm)+€m|v2wm|2d:c:2K*, lim |wp — up| dz = 0.

m— o0 (71,1)><(7%,%) Em m— o0 (71,1)X(7%,%)

Note that here we have used condition (Hs), and note also that the new function w,, extended to R x (f%,

is still in Wli’coo (R X (—%, %) ;Rd) because w,, does not depend on x; nearby the axis of reflection x; =

)

N[ N—=
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The remainder of Step 1 is devoted to the proof of (6.12), where we use the notation I, := (=1/2, —b,,) x
(—1/2,1/2). We have

W(Vwm +e | V2we |’ dx—/
Q\In €

lW e
+/ - <0a au (as,maxQ)) +e€
I \Rom € O

/ ~W (Vu.) +€|V2u€‘ dm—i—/ éW(VwE,m)—i—EWQwe,m‘de

e,m

1
_W(Vua +E‘V2ua| dac—i—/ =W (Vwe,m) +€|V2wa7m‘2dm
QF Rim €
2

dx

0%u,

2
0x3

(*ae,ma l‘g)

2
dx.

2

aua 0% U,
_ B 5 ( a57m,$2) +e¢

2
Oxs

(_ae,'mm .ﬁg)

By Remark 6.1 we have

P
W{o, % (_aa m7$2) <CW (VUE (_aa m7$2)) +C Oue (_aa ms IQ) <CW (VUE (—GE m,$2)), (613)
8:02 ’ s 81'1 , ,
hence, by (6.11)
i1 Oue 20, 2
m % EW (O, 8I2 (ae,m;z2)> +e al‘% (*asym’lé) dx
3 1 92 . 2 c
< — _ e
<wl, EW(Vue( Qe.m,T2)) + € o2 (—Gem, x2)| do < =,
and, in turn,
1
/ - (Vwam +€|V2wam‘ dx </ ~W (V) +E‘V2ua| da (6.14)
Q

—W (Vwe ) + € ‘VQwe,m|2 dx + g
€ m

“
Rem
Similarly, again by (6.11),

/ |We m — wo| dz S/ |u6—u0|dm+/ |We,m — uo| dz
Q Q\I;n R

e,m

—/ ) |te (—Qe,m,T2) — |z2| a| dx
3

C
§/ |u57u0|d:c+/ |we m — uo| dz + —,
Q\Im R m

and thus, also by (6.14), to prove (6.12) it is sufficient to show that:

(i) lim lim fR’ W (Vwe,m) do = 0;

m—00 ¢—0+t

(i) lim lim [, e|V2w. .| de=0;
m—>ooa—>0+ Reim

(iii) n}gnwag%l+ fR, |we,m — uc|dx = 0.

Now

Vit (1) = Pem (0 Ve (0)+ (1= e (1)) (0] F25 (=) (6.15)

+ (ue (w1, 2) — ue (*as,ma T2)) ® ‘P/e,m (r1)e1.
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By (Hz)"” we have
W (&) <CA+IEf) <C(1+277[Vuol” + 2771 € = Viuo|”)

and so, using (6.15),

/ W (Vwe ) dz < C= / (1+ |Vuo|” + |[Vwe,m — Vuo[”) dz
R

s m £,m

1 11t
<ol H 1+ la®eal’)
Em | €

1 » Ou, P
+C- |[Vue — Vug|” + [Vug — | 0, (—Gem,z2) || dz
g Rim 6$2
—|—C1 (ﬂ>p|u (z) — ue (—aem,x2)|" da
c Ro c 5 £ e,my L2

11 . 1717741 2 .
<C|=+= |Vue — Vuo|' doe + — | = - IV (uo — ue) (—ae,m, x2)|" dao
m 3 Rim m _

3 3

1
2

+ Cgp+1 /R’ lue (z) — ue (—aem, x2)|" dz

e, m

1 13K* [1]7" 6K* [1]7'1  m? »
<C <E+gmf’+1 [g] +W {E] E+{51”T/1%7 |te () — e (—ae,m,x2)|" dx |,

where we have used (6.9), (6.10), (6.11). Thus to prove (i) it remains to show that

mP »
lim lim |te () — Ue (—Ge,m,x2)|" dx = 0.

m—oo c0+ P+l

e,m

Indeed, by Holder’s inequality

Cem | Qu g
|Ue ($1,$2) — Ue (_aa,m7x2 (/ - axi S 362) ds)
eNP/P %™ | Ou, P
< N
- (m) /bs,m al‘1 (S,IQ) ds
<C (i) / IV (e — o) (s, 22) [P ds,
m —be,m
and thus by (6.10)
P gNPTL [Tom P
[te (1, 22) — Ue (e m, x2)|" dz < C (—) [V (us — uo) (s, 22)|" dsdz
Rom Rom T —be,m
177" ert » gptl
=¢ [E] mp /— Ve = Vuol de < Clgpr
and the (6.12) holds.
To show (ii) note that for z1 € (—be m, —Cem)
9 9 0%u,
‘v We m ($)| < Yem (Il) |v Ue (I)‘ + (1 — Pem (xl)) 8—1'% (_aa,m; IQ)

Oug

(6.16)

e (21,22) = e (= 2) [ )] 2 )| [P (@) = (0] 2 (e ).

44



and so

2
0%u,

‘2
0z2

‘v2we,m‘2 <C <|V2u€ + ‘ (7a€,m7x2)

Ou,

92 (ag,m,x2)> 2) .

We now estimate the two terms on the right hand side of (6.17). By (6.16) and Holder’s inequality

J,

my\4 m 2
+(3) e = e (o) + ()

Vue — (0

e,m

1717t (p—2)/p 1 2/p 23
< E[g} (C—mQPH) SCﬁ,

while
Ou. 2 Oue 2 Oue Oue 2
_ _ <9 |ZZE _ _
‘VUE () (0 ‘8:82 ( a&m,xg)) > 2‘&%1 (x)‘ D () D (=@ m, T2)
2
—b 2
e,m a u
< _ 2 ¢
< 2|Vue — Vug|” +2 </—c5 922001 (s,x2) ds)

< 2|Vu, — Vu0|2 + S—T;/ ‘VQue (8,552)|2 ds.

Hence, by (6.10) and Hoélder’s inequality,

J;

2

Oou,
6$2 (*ae,ma l‘g) )

Ve () — <o

dx §2/ |Vue — Vuo|2 dx

RE m
3 7ba,7n

+ 2 / / |Vu. (5,.732)‘2 dsdx
M JRzm

e,m

Ce,m

<2 \R;m\(”‘”/” (/
.

e,m

-1
+ % F] E/ ‘V2u6‘2dx
m 1> R

e,m
2

e 3

CEtOE

2/p
|Vue — Vugl? dm)

By (6.17), (6.18) and (6.19) we conclude that

),

1
2

2 2 2 2 52 2 2
‘V we,m| deCE/ ‘V u5| dac—i—CE/ |V Ug (—ae,m,$2)| dxo

m Rom 3
m? ou, 2
+C— Vu, — (O ‘ c (ae,m,mg)) dx
g Rim 81'2
m4 2
+C— [ue — Ue (—Qe,m, x2)|” dx
& JRim

—1
3 [1 1 1
gC<K*—H +6K*5+—+£+_>_>o
m | € m m m m
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(6.17)

2/p
[te (21, %2) — e (—ae,m, :L'2)|2 dr < ‘R;m|(p72)/p (/ lue (21, T2) — te (—@em, 2)|" d:c) (6.18)
Rem

(6.19)



as € — 07 and m — oo.
Finally, note that by (6.18)

/ |We,m — ue|dz < C i/
RZ mJRr
as e — 0.

Step 2: The N-dimensional case. Take sequences {e,} C Ry, {u,} C W22 (Q;R?), such that &, — 07,
Uy — ug := |zy|ain L' (Q;R?) and

1/2
lue — ue (—ae,m, I2)|2 dm) —0

e,m

1
lim [ =W (Vun) + 0 | V| do = K*.
e—0t Q En
By Step 1 there exist a subsequence {e,,} C {e,} such that the corresponding fields u,, may be modified so

as to obtain a new sequence {wfﬁ)} c W (R x (-1, %)Nfl ;Rd) , z1-periodic with period 2, such that

Vi () = £a® ey nearby oy = £ (resp.) and

1 2
lim —W (Vad) + = ‘v%,ﬁp‘ dr = 2K,

Mmoo J(—1,1)x(~4,5)V ! Em

lim N
—1
Mo J(—1,1)x(-4,1)

wf,{) —uo‘dx =0.

We treat zo just as above. Starting from the wS,P above we construct
(2) — (1) 1— (1) T
wy” (x) := pp (x2) wyyy (x) + (1 = g (22)) Wiy, (21, £ bg, 23, -, 2N) -
with by, — 1, such that

1 2
lim —W (Vo) + e, |20 | do = 257,

Fmoe Jic1)x(=4.3)" 7 Em

lim
k=oo Ji—1,nyx(-4.4)V "

w,(f) — uo‘ dx = 0.

Note that w,(f) (x) is still periodic in x; with period 2 and Vw,(f) (z) = £a® ey nearby xy = £1 (resp.).

After reflection about zo = % we obtain a sequence w,(f) (z) periodic in 27 and in x9, of period 2, such that

Vw,(f) (r) = +a® ey nearby oy = +1

5 (resp.), and

1
lim
k=00 J—1,1)x(~1,1)x (= 3,4)V 77 Emy.

2
W (Vo) + e, [vRuf® | do = 4K,

lim
k—o00 (—=1,1)x(—1,1)x (7%7%)1\772

w,(f) — uo‘ dxr = 0.

By repeating this process for all remaining variables z3, -+ ,zny_1, we obtain sequences fulfilling the claim.
[
Define

Kper = inf {/ LW (Vv) + % ‘V2v|2 de:L > 0,0 W (Q;Rd) 7
Q

1
Vv = +a ® en nearby zny = iﬁ’ v periodic of period one in x'} .
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Proposition 6.4 Assume that W satisfies conditions (Hy), (Hs)", (Hs) and (Hs). Then
K* = Kper.

Proof By Proposition 6.3 K* > K. To prove the opposite inequality, fix § > 0 and let L > 0, v €
loc (Q, ) , v (-, xn) Q-periodic for all zy € R, such that Vv = +a ® ex nearby zn = :l:% (resp.) and

/ LW(V’U |v2’U‘ dI<err+(5
Q
Let {e,} be a sequence converging to 07, and writing € := ¢,, define

' .
eLv <5_L’%)+G(ZNQ) if oy > £

2 (z):={ elLv EiL) if |zy] < <L, (6.20)
LA Ly L
eL <E—L,§) —a(zy+ %) ifany < -5,
so that
a®en if oy >
V. (z) = { Vo (EiL) if |zy] < <E, (6.21)
—a®eny ifzy< —%.
Then

/ |V25—Vu0|pdx:/ /2 Vv(i>—a®eN}pda:'da:N
Q+ rJo EL

b w
:EL// Vv(—,t)—a@e;v
S el

since v € W2 (Q;Rd) , and where ug = |zy|a, QT := Q' x (0, %) . A similar conclusion holds in @~ :=
Q' x (75,0) and so Vz. — Vug in LP (Q; Rd) . Moreover, by the Riemann-Lebesgue Lemma

/ SW (Vao) 4 [V d:cf/ /Q/E (Ve ( EL))+EL2 w20 (EL)rd:c’d:cN
/Z/ILW <w (:—Lt)>+% V20 (:—;t)

K*g/LW(W |v2v} do < Kper + 6.

P
de'dxy — 0

dxr dtﬂ/ LW (Vv) + ‘V2v| dx,
and so
It now suffices to let § — 01. m

Remark 6.5 If Q = w x (—h,h), where w C RN~! is a bounded open set, and if we consider the sequence
defined in (6.20), then we have by the Riemann-Lebesgue Lemma

[giesseiessas= [ [ 2w (5o (5)) v () wnn
[ L (e () 2l ()
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6.2 z'-connected domains

Theorem 6.6 Let Q C RN be an open, bounded, simply connected domain with Lipschitz boundary. Assume
(5.14) and let W satisfy the conditions (Hy), (Hs)", (Hy) and (Hs). Let u € Wh1 (4 RY) , with Vu €
BV (;{A,B}). Then
r- h%l+ I (u; Q) = K* Perq(E),
E—

where Vu(x) = (1 — xg (x)) A+ xg (x) B for LY a.e. x € Q.

Proof. The proof is very similar to that of Theorem 5.6.
Step 1: One interface. We assume first that v has the form

u(z) =|zyla ae. in Q.

We proceed as in Step 1 of Theorem 5.6 and in place of the function g we consider a function v € W2 (Q; Rd)
admissible for Ky, and, consequently, we define

e, 5 (1) == s (v) 2o () + (1 — 15 (x)) u ()

where z. is now defined as in (6.20). The estimate (5.18) should be replaced by
a’ 1 x 2
/ —W(Vza +5‘V2za dx—/ / Lw (VU (—,t)) +—‘V2v (—,t)
{ps=1} 9 % w; el L el
— HY T (wf) </ LW (Vv) + |v2v\ d:c>

as € — 07, by Remark 6.5. By (6.20) and (6.21) the bound (5.24) continues to hold, while (5.25) should be
replaced by

da’ dt (6.22)

1V (e —wl < Vo ()] + IVl <€ 92| < 2 ‘v( )‘<§ (6.23)

for |zn| < eL. We can continue essentially as before, using (6.22) in the right hand side of the new formula
corresponding to (5.28). We omit the details.

Steps 2 and 3: In the cases of finitely many and countably many interfaces we may proceed, respectively,
as in Steps 2 and 3 of Theorem 5.5. We omit the details. m

6.3 General domains

In this section we remove the condition (5.14).

Theorem 6.7 Assume that W satisfies the conditions (Hy), (Hz)", (Hy) and (Hs). Let u € Wh1 (2 RY),
with Vu € BV (Q;{A, B}). Then

I — lim I (u;Q) = K*Perq(FE),

e—0t
where Vu(z) = (1 — xg (z)) A+ xg (v) B for LY a.e. € Q.

Proof. The proof follows closely that of Subsection 5.4, with the only differences that in (5.34) of
Proposition 5.7 the function z. is now defined as in (6.20) and, in turn, the estimate (5.25) should be
replaced by (6.23). m

el !
7 Condition (Hy)
In this section we weaken the condition (Hy) on the bounds of W near the wells.

Theorem 7.1 All the results of the previous section continue to hold if condition (Hy) is replaced by (Hy)" .
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The next lemma ensures that the function g introduced in (H4)/ to control the behavior of W near the
wells may be extended to a function G still satisfying the doubling condition, and such that G (|- — A|) and
G (|- — B|) may be compared with W in the whole R**¥ . As before, in what follows we are assuming without
loss of generality that A and B satisfy (2.1).

Lemma 7.2 Let g : [0,00) — [0,00) be a convex function, with g(s) =0 if and only if s =0, such that

g(2t) < Cg(t) (7.1)
for all0 < t < p,
g(|§=A) <W () <Cyg(l¢ - Al (7.2)
for all € € RN with |¢ — A| < p, and
g(|€—=Bl) <W(£) <Cy (|- BJ) (7.3)

for all & € RN with |¢ — B| < p, for some constant C = C (p) > 0. Then there exists a convex function
G : [0,00) — [0,00) such that G (t) = g (t) for allt € [0, ],

G(s+t)<Ci(G(s)+G (b)) (7.4)
for all s,t > 0 and for some constant C; > 0,

G (t)

t—oo P

—1, (7.5)

C%G(IE’I) < C% min{G (|§ — A]),G (| — Bl)} < W (&) < Comin{G ([ — A]), G (| — B|)} (7.6)
for all ¢ € RN and for some constant Cy > 0,
W (&) <Cs (W (n) +G (& —nl) (7.7)
for all £,m € RN and for some constant Cs > 0,
CaG (IS — Al) < W (E) (7.8)
for all ¢ € RN such that |€ — A|,|¢ — B| > p and for some constant Cy > 0.

Proof. Let a > p be any Lebesgue point for g’ (recall that, since g is convex, ¢’ is a function of bounded
variation, precisely ¢’ € BWq. ([0, 00))), and define

_J 9@ for 0 <t <a,
G(t)_{ t* + (g’ (a) —pa?~ )t +g(a) — g (a)a+ (p—1)a? fort> a. (7.9)

We claim that G is convex. Assume first that g € C? ([0,00)). Then

& (1) = g (t) for 0 <t < a,
ptP~1 + (¢’ (a) —paP~') fort > a,

and
" g// (t) fOI' 0 S t < a,
p(p—1)tP=2 fort > a.

Hence G’ is continuous and nondecreasing, since G" (t) > 0 for all t # a, and, as G is continuous, this implies
that G is convex. In the general case, consider g. := 7. * g and let G. be the corresponding convex functions
defined as in (7.9). Since g. — g pointwise and g. (t) — ¢’ (t) for every Lebesgue point t of ¢, we obtain
that G. — G pointwise, and thus G is convex. Condition (7.5) is now immediate. To prove (7.4) we first
show that

G (2t) < C1G (1) (7.10)
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for all ¢ > 0 and for some constant C; > 0. It ¢ < p this follows from (7.1). Let p1 > a be so large that
2tP > — (2P71 = 2) (¢ (a) —2a)t — (2PT' = 1) (g (a) — ¢’ (a) a+ (p — 1) aP)
for all ¢ > p;. Then

G (2t) = 217 + (g’ (a) —pa?~') 2t + g (a) — ¢’ (a) a + (p— 1) a”
=2PTIG () — 2t — (2P —2) (¢’ (a) — 2a)t — (2°T' = 1) (g (a) — ¢' (@) a + (p— 1) aP)
< 2PTLG (1)

for all t > p;. Thus (7.10) holds for ¢t < p and ¢ > p; taking as a constant max {C, 2P} . For ¢ € [p, p1] we
have
maxp2p,) G

G(2t) < g

: G (t)
ming, .|

and thus (7.10) holds for all ¢ > 0 with

(h:nmx{cyy+lﬁfﬁzgﬂL€},

ming, ,,) G

To prove that (7.10) implies (7.4) is standard, note that by convexity and (7.10)

G@+wzac“;“)g%@@@+c@m§%a«x@+ewy
By (7.2) and (7.3) condition (7.6) holds if either |¢ — A] < p or | —B| < p. For k > 1 set Ej, :=
{€e RN |e— A|, |6~ B| 2 p, |¢| < k}. For € € B

ming, W

maXEkG(|-—A|) G(|§7A|)a

maxg, W
G(E—-A|) <W () < — k
- <w (e < el
and a similar inequality holds when the G (|€ — A|) is replaced by G (|{¢ — B|) . Thus it is sufficient to prove

(7.6) and (7.8) for |¢| > k where k > 1 remains to be chosen. This is an obvious consequence of (Hz)” and
(7.5). m

Remark 7.3 In light of Lemma 7.2, and in spite of the fact that the qualitative properties of g are only
given nearby zero, in the remaining of this section, and without loss of generality, we will assume that g
satisfies (7.4)-(7.6) and (7.7)-(7.8) with g in place of G.

The next result has been proved by Bhattacharya and Leonetti [12] in the case where 2 is convex and
S = (), and a generalized version for for open, bounded domains with the cone property may be found in
the Appendix.

Proposition 7.4 Let Q C RY be an open bounded set, starshaped with respect to a set S C 2, with |S| > 0.
Let g : [0,00) — [0,00) be a convez function, with g(0) = 0. Let u € Wh! (Q;R?) be such that g (|Vul) €

L' (Q). Then
1—L
Iu@ﬂ—uﬂ) (aNdN) ¥ )
—t = ) dr < — Vul) dz,
(ég( d ) 5] J 0 (Vb

where ug := ‘—L};‘ fsud:c, d is any number greater or equal than the diameter of ), and ayn is the volume of
the unit ball in RY.

Proof of Theorem 7.1. Condition (Hy) was used only in the proof of Propositions 6.2 and 6.3. Thus
it remains to show that these propositions continue to work under the weaker hypothesis (Hy)'. We begin
with Proposition 6.2.
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Vertical matching— first matching: The proof of the first matching continues to work up to (6.8). By
(7.6) and since g is increasing

1 1
B W (V) dx < g/ Cyg(|Vve —a®en|)dzx (7.11)
L e
1 , 1 _
§g gl C |Vz/u5(:c,z5)|+|VuEfa®eN|+g|u€fuofu€| dx

C 1
< ?/ 9 (|[Varue (2',20)]) + g ([Vue —a®@en|) + g (g [ue —up — u€|) dz
L.

where we have used (7.4). We now estimate the three terms on the right hand side of (7.11). By (7.6)

l/ 9 (|Voue (2, 2:)]) de = [l} e /Q/g(|Vx/u€ (2, z.)|) da’ (7.12)

€ € 6e

€

<C | W (Vue(2,2:))da’ — 0
Q/

as e — 0T by (6.6). If |[Vu. —a®en| < por |Vu. —a®en|,|Vu. + a® ey| > p then by (7.8)
g(|Vu: —a®@en|) < CW (Vue),
while if [Vu, —a®en| > p and |Vue + a ® en| < p then

Vu. —a®en|?
(Vs —a@en)) <glp+2laen]) <g(pt2lamey]) Vie—a@enl’

pp
Hence o o
;/ g(|Vue —a®en|)dx < ;/ W (Vue) + |[Vue —a®en|’ de — 0 (7.13)
L. L.

as € — 07 by (6.5). Finally, by Jensen’s inequality

C 1 C 1 [

— g<—|u5—u0—ua|> de < — [ g —/ |Vue (2',t) —a®epn|dt | do (7.14)

e L. e e L. g 957[%]’1%

c 1 [% .
< — - g(|Vu€(:c,t)fa®eN|)dtd:E
S et dopy

T
6
C
=— [ g(|Vuc—a®en|)dz —0
3 L.
as € — 07 by (6.5). Thus, by (7.11)-(7.14) the claim (iii) holds as before.

Vertical matching—second matching: To prove (ii) in the second matching, note that by (7.6) and
since g is increasing,

1 1
—/ W (V) dx < —/ Cy(|Vve —a®en|)dx
Q' x(0e, Q' x(6-,3%)

g %) 1>
C _
< — 9 (IVorue (2, 22)]) + g (|te — cc|) dz
g Q/X(057%)
C
< = W (Vue) + g (e — cel) d,
9 QIX(057%)

where we have used (7.4). Thus by (6.5), it suffices to prove that
C

— g (|te — cc|) dz — 0.
€ JQ'x(0e,3)
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By Proposition 7.4

¢ g (fs — cel)d f—/ Lo(lo-
g Q'X(Ga,%) € € ’ e |Ql| Q'
< —/ / (|Vpiie|) da'dz

< — | g (|Varue (2, z0)|) da’
€ Jg

e (7', 2¢) da’

> dz’dx N

<S [ W u @ ) d —0
E QI
as € — 07 by (6.6), and where we have used (7.6).
It remains to ensure that Proposition 6.3 still holds.

Transversal periodicity: The proof of Proposition 6.3 continues to work. The only difference is on the
estimate (6.13) which continues to hold since, by (7.6) and the fact that g is increasing, we have

0 € . 0 € 0 €
W <07 i (as,mva)) § C’2 min {g (‘i (70457777,71'2) —a > » g (‘ az (7as,m7x2) +a >}
2

6302 6302
< Cymin {g (|VU5 (_ae,m; IQ) —a® te) g (|vu5 (—a57m,$2) Tad 62|)}
§ C%W (VUE (7045,777,; 1'2)) )

and we can now proceed as before. m

8 Example of a non one-dimensional interface

In this section we show that when (Hs) holds but (Hj) fails, the asymptotic limiting problem may not have
a one dimensional character, namely,
Kper < K.

Consider the case where N =2, d = 1, so that, with z = (x1,z2), we have
Kper i= inf{/ LW (Vv) + ‘V2v| dridre : L >0,v € W™ (Q;R),
IR - . .
Vv = £es nearby zy = ia, v is periodic of period one in xl} .

In what follows we say that v € Wli’coo ((—%, %) X R;R) is such that Vv = +ey nearby zs = £oo if there

exists a constant M > 0 such that Vv = e, for all x € (f% 5) X R (resp.) with xo > M (resp. xo < —M).

Proposition 8.1

11
Kper 1nf{/ / LW (Vv) + ‘V2v| dridze : L >0,v € Wlifo <<§,§> XR;R),

Vv = +tes nearby X9 = 00, v is periodic of period one in 1} =: Koo.

Proof. By linear continuation it is easy to see that Ko, < Kper. To prove the converse inequality, fix

§ >0 and let v € W2 (( %, é) X R;R) be an admissible function for K, such that, for some L > 0,

/ / LW (Vv) + |V2U‘ dridrs < Ko + 6.
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Since Vv = tey nearby x5 = +00 we may find a positive integer m such that

Ky +5>/ / LW (Vv) + \v2v| dryday = / / LW (Vv) + \v%\ dxyday
} m—4 /-3
and Vv = tey for £22 > m. Due to the periodicity of v with respect to x1, we have
m+2
m+5>/“ / LW (Vv (z }VQ ()] daydas
m-} %
mt 1 oo 2
— - 12m—|—1 Z %LW (Vv (z1 + k, z2)) +Z|Vv(:c1+k,:£2)| dx1dxs

mts B 1 2
2
[m | 2m—|—1 Z /77 W (Vo ( 1’1,1’2))+Z |V v(zl,z2)| dx1dxs

m+2 m+2

1
— / LW (Vv (21,22)) + 7 |V (ml,x2)|2 dxidzs

2m+1

mf— mf—

1 2
= LW (Vv (z)) + = |V (2)|” de.
ST g P TG+ V)

Via the change of variables x := (2m + 1) y we have

Koo +6> (2m+1)/QLW(Vv((2m+1)y))+%‘V2v((2m+1)y)|2 dy

:/Q(2m+1)LW(Vz(y))+ !

2 2
@m+1)L V=) dy,

where we have set z (y) := 2m+1v ((2m 4+ 1) y). Note that

z(y1+1,y2) = v((2m+ 1)y 4+ @2m+1),(2m+1)ys)

2m +1
1
T 2m+41

= Z(ylay2)7

v((2m+1)y1, (2m + 1) y2)

since v periodic of period one in z1, and Vz (y) = %eq if ys is nearby +1 5, resp. Hence z is admissible for
Kper, and so

1 1 2
Ko +6> / LW (Vv (z)) + = |V (2)]° dz
5 T i W @)+ L[V

= (2m+1>/QLW(Vv((2m+ Dy)) + % V20 ((2m + 1) y)|” dy

1

9 2
R v/ > .
2m+1)L ‘ i (y)‘ 4y = Kper

/Q(2m+1)LW(vZ(y))+

It now suffices to let § — 01. m
Next we exhibit an example of an energy density satisfying (Hiy), (Hz2) , (Ha)' and (Hs) for which
Kper < K. Define

2
W (&) =W (&.,&) = (1 -} - &) +¢&,
where a > 0. Then W (¢) = 0 if and only if £ € {(0,1),(0,—1)}. By Lemma 3.5 in [23] we have that

K = inf {/_00 W (0,9(s))+ g (s)|2 ds : g piecewise C*', g(—o0) = —1, g(c0) = 1} (8.1)

= inf {/00 (1-¢° (5))2 + g’ (5)|2 ds : g piecewise C', g(—o0) = —1, g(c0) = 1} .

— 00
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It is not difficult to see that K is realized by the unique solution of the boundary value problem

{ 9" +29-2¢g°=0
g(ioo) - 717 g(OO) - ]-7

which is given by ¢ (s) := tanh s. Define @ ( fo ) ds = Incosht.
Proposition 8.2 If a is sufficiently large then we have Kper < K.

Proof. Set
v(z) =v(x1,22) =0 (T2) + M (w1, 22)

where ¥ (21, 22) := sin (27z1) f (z2) and f is a smooth nonnegative function with compact support. With
L =1 we have

/. /,,WWHW dnndry = [ (1= ()" + 1 o) ds

+ A2/ /l |V2¢|2 +2 (397 (w2) — 1) sin? (2m21) (f' (22))” + 4n? cos?(2ma1) £2 (x2)
—8n%a (1 - ¢° (22)) cos® (2ma1) f? (22)] dwida,

+ At / / N sin® (2721) (' (22))° + 472 cos? (2may) f2 (xg)} ’ da1das

=11 + NIz (a) + M3 (@) .

We now choose o > 0 so large that I3 (o) < 0, and then X so small that A\2I5 () + M I3 (o) < 0. In view of
(8.1)

/ / W (Vv) + |V2U‘ dxidzo </ (1-g¢° (s))2 + g’ (s)|2 ds=K

Let {u,} be a sequence of smooth functions converging to @ strongly in Wli’cp (R) for all p > 1, and such
that u), (z2) = tey (resp.) for all z3 > n (resp. x2 < —n). Define

Un (2) 1= up (x2) + M (21, 22) .

Then v,, are admissible for K., and so

o < 11m/ / W (Vuy,) +|V2vn‘ dxidze
1
2

/ / W (Vo) + [V20|* daydes < K.

This, together with Proposition 8.1, concludes the proof. m

9 Appendix

In the Appendix we generalize Poincaré’s inequality to Orlicz-Sobolev spaces (see Proposition 9.2). Although
it is probably known to experts, we have not been able to find it in the literature. The proof follows that of
Maz’ja [29] for the case g (s) = |s|’. A first version has been proved by Bhattacharya and Leonetti [12] in
the case where 2 is convex and S = Q.

We recall that an open set Q C RY is starshaped with respect to a set S C € if Q is starshaped with
respect to each point of S, i.e. if x € Q and s € S then 6z + (1 —0)s € Q for all 6 € (0,1).
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Proposition 9.1 Let 2 C RY be an open bounded set, starshaped with respect to a set S C €, with |S| > 0.
Let g : [0,00) — [0,00) be a convez function, with g(0) = 0. Let u € Wh! (Q;R?) be such that g (|Vul) €

LY (). Then o
[o(E58) (528 L

where ug : ‘S‘ fsuda: d is any number greater or equal than the diameter of €, and ay is the volume of
the unit ball in RV,

Proof. We follow Lemma 7.16 in Gilbarg and Trudinger [24]. Assume first that v € W' (Q;R?) N
Ct (Q; Rd) . Since € is starshaped with respect to S C Q, for x € Q2 and y € S we have

lz—yl y—x
u(:c)fu(y):f/ Dyu(z+rw)dr, w=——7.
0 ly —

Averaging with respect to y over S yields

u(w) —us =— |S|/dy/|a yl u(z +rw) dr.

Since |z — y| < d we have

|u () — us| /'1 v
< |Dyu (x + rw)| drdy.
d |S| s|93*y|

As g is convex, it now follows from applying twice Jensen’s inequality that
lu (x) —us|) 1 1 /x_y
I\——— = | T7T— g (|Dru (x4 rw)|) drdy.
( d 1S Js |z =yl Jo ’
Defining
| Vu(z)] zeQ,
Vi(z) = { 0 x ¢ Q,

and, as ¢ is increasing, we have

|u (z) us|> 1 1 o0
gl ———— ) < — g (V (z+rw))drdy
( d |S| {y:|z—y|<d} |$ - y| 0 ( ( )

) d
S g (V (z +rw)) p™N ~2dpdwdr
1S] Jo  Jjwj=1Jo
del 00
:7 V(x4 rw)) dwdr
=75 /. /1g< (& + 1))

N-—1
~ oy Ll (T d

where we have used the fact that g (0) = 0. The theory of Riesz potentials (Lemma 7.12 in Gilbarg and
Trudinger [24]) now yields

|u (z) — us] 1 N
La(M ) do < e 00 g [ovuas

and the proof is complete. m
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Proposition 9.2 Let Q C RY be an open bounded domain having the cone property, let g : [0,00) — [0, 00)
be a convex function satisfying the doubling condition, with g (0) = 0. Let u € W1t (Q;Rd) be such that

g(|Vul) € L' (Q). Then
/ g (lu(z) —upl) dx < C/ g (|Vu|) dz
Q2 Q

up = y) dy,
AL

B is any fized ball whose closure is contained in 2, and C' is a positive constant depending only on € and
on the ball B.

where

Proof. Since 2 has the cone property, it is the union of a finite number of domains starshaped with
respect to a ball. Let d be a number greater than the diameter of all these domains, and let A be any of these
subdomains with D being the corresponding ball. Construct a finite family of balls By, --- , Bjs contained
in Q and such that By = D, B; N B;y1 # (), Byy = B. Since A is starshaped with respect to any fixed ball
B contained in By N By, by Proposition 7.4 we obtain

NN =%
— ~ N A
/Q(M) iz < (O‘Nd ) u/ng) de
A d |Al ‘B‘ A
By Remark 7.3 and (7.4)
|U(ﬂf)|) ugl ayd¥\'F |A|
gl —=|de<Cl|A|lg|—= | +C (IVul)
(™ g (14 ) [ et
A aN ¥ 1A
| | <|u >d:c +C (aN > |—~|/ g (|[Vul) dx
g i) ol
where we have used Jensen’s inequality. Hence
[u (@) 4] ju @) an a7V |4
/g( )d<c / g( )dmw( ) = [ avuds
A d ‘B‘ BonB, d A ‘B‘ A

Similarly, since for ¢ = 1,--- , M — 1 the ball B; is starshaped with respect to any fixed ball B; contained in
B; N B;11 # 0, we obtain

Jur()awselpt [, o (5o ve (557) G a0
() o ([ (MY [ ).

Summing over all A gives

/Qg(lu((;”) deC(/Bg(WE;”) da +/Qg(|Vu|)dm). (9.1)

Since B is convex, by Proposition 7.4

(s (5
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\_l%ﬁ’l fB udz. Replacing u by u — up in (9.1) we obtain

[o(ehmeal) g <o ([ 4 (W80 o [ g ouar)

< C/Qg (|Vul]) da.

where ug :=

Applying the latter inequality to du in place of u yields

/quu(m)fu]an dwsc[zg<d|Vu|>dxgcl/gguwudx,

where we have used the fact that g (dz) <const. g (z) for all z > 0 (see Remark 7.3 and (7.4)). This concludes
the proof. m
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