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Abstract

We study the Föppl-von Kármán theory for isotropically compressed thin plates in a
geometrically linear setting, which is commonly used to model weak buckling of thin films.
We consider generic smooth domains with clamped boundary conditions, and obtain rigorous
upper and lower bounds on the minimum energy linear in the plate thickness σ. This energy is
much lower than previous estimates based on certain dimensional reductions of the problem,
which had lead to energies of order 1 + σ (scalar approximation) or σ2/3 (two-component
approximation).

1 Introduction

The Föppl-von Kármán (FvK) equations of thin-plate elasticity [16, 7, 1, 20] describe stretch-
ing and bending of a thin, homogeneous, linearly elastic plate of uniform thickness in terms
of a three-component, two-dimensional displacement field. The equations are nonlinear and
involve high-order derivatives, hence many simplified forms have been proposed in the liter-
ature, which have proved appropriate for the study of different phenomena. These include
crumpling of paper, structural failure of steel plates, and telephone-cord delamination in thin
films (see e.g. [6, 18, 3], and references therein). In the case of small applied compressive
strain, assuming that the plate deviates only slightly from a flat surface, one can expand the
strain term to leading order in the in-plane (ux, uy) and one out-of-plane (w) components of
the displacement field, and replace the bending term with a simple singular perturbation in
the out-of-plane component. For isotropic materials and isotropic compression one obtains,
after some rescalings,

I
(σ)
FvK[u,w,Ω] =

∫
Ω

[∇w ⊗∇w + ∇u + (∇u)T − Id
]2

+ σ2|∇2w|2 d2r , (1.1)
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where σ is the rescaled plate thickness, and for simplicity the Poisson ratio ν has been set to
zero (this entails no loss of generality of the results of this paper, see the Appendix). Clamped
boundary conditions result in u = w = ∇w = 0 on ∂Ω. The functional (1.1) is quadratic (and
convex) in the two in-plane components u of the displacement field, but the strain energy
is not convex in the out-of-plane component w. Gioia and Ortiz [19, 10] observed that good
agreement with many experimental observations is obtained by considering a simplified theory,
in which the in-plane displacements are neglected. By setting u = 0, the problem is reduced
to the search for a scalar, two-dimensional field describing vertical displacement from the
reference plane. The resulting functional, which for isotropic compression has the form∫

Ω
1 + (1 − |∇w|2)2 + σ2|∇2w| d2r , (1.2)

had previously appeared in a different context [4], and has been extensively studied in the
mathematical literature partly due to its similarity with the Modica-Mortola functionals in the
theory of Gamma-convergence. Deriving the Gamma-limit of (1.2) is still an open problem,
even if considerable progress has been recently achieved [5, 2, 11, 8]. The energy of the
minimizers scales as |Ω| + cσ. A natural approximate solution for small σ, which is generally
conjectured to be the correct limit, is the distance function from the boundary. The analogue
of (1.2) for the case of nonisotropic compression has also been studied [9].

In parallel with the mathematical progress on the restricted functional (1.2), Jin and
Sternberg have relaxed the constraint of zero in-plane displacements [13]. Within a larger (but
still restricted) class of functions they have been able to prove that the optimal energy vanishes
as σ2/3 for σ → 0, adapting - for the upper bound - a self-similar branching construction
used by Kohn and Müller [14, 15] to describe twin refinement in a model of martensitic
microstructure. In a different linear stability framework, Audoly [3] also emphasized the
importance of the in-plane components.

In this work, we consider the full linearized FvK energy under compressive isotropic strain
(1.1), and prove that the actual minimum energy scales linearly in σ. Hence we show that
the Jin-Sternberg prediction of vanishing energy for σ → 0 is correct, but the scaling in the
full problem (1.1) is different from the one in the restricted functional. Some of our candidate
minimizers are reminiscent of the distance function, but - at the present level of understanding
- this does not appear to be a necessary feature in order to have small energy. In particular,
our only structural finding is that, as σ goes to zero, a finite fraction of the total energy
concentrates in a thin strip (of width σ) along the boundary.

The arguments for the lower and upper bounds are distinct, and are presented in Section 2
and 3 respectively. In both cases, for the sake of clarity we found it useful to perform first the
proof for a simple rectangular geometry, and then show the generalization to a smooth curved
boundary. For the lower bound Lipschitz regularity of the boundary suffices, while the upper
bound is established for a piecewise C4 boundary. The latter condition can be relaxed, but we
don’t pursue this here in order to minimize technicalities. Our approach can be extended to
other, nonlinear plate theories and to the full three-dimensional problem. This will be treated
in a forthcoming publication.

While writing the present paper, we have become aware of related but independent work
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of Jin and Sternberg [12], which reaches the same conclusions for the case of a square domain
with clamped boundary conditions on two sides and periodic ones on the other two.

2 Lower bound

Let Ψ = (u,w) denote the displacement field. In this Section we prove the lower bound on
I
(σ)
FvK[Ψ,Ω], which gives the following

Theorem 1 (Lower bound) Let Ω be an open, bounded subset of R2, with Lipschitz bound-
ary. Then, there is a positive constant cΩ such that for sufficiently small σ one has

I
(σ)
FvK[u,w,Ω] ≥ cΩσ (2.1)

for any displacement field Ψ = (u,w) which satisfies the boundary conditions u = w = ∇w = 0
on ∂Ω.

For the sake of clarity we first consider the case of a piecewise straight boundary, and then
show how the argument is generalized to the case of Lipschitz boundaries. In both cases,
we actually prove that any region of size σ × σ adjacent to the boundary contains an energy
density of order 1. In view of the upper bound presented in Section 3, this implies that for
σ → 0 a finite fraction of the total energy concentrates on the boundary.

Before starting the proof, we mention some general properties of the functional IFvK defined
in Eq. (1.1), which can be more explicitly written as

I
(σ)
FvK[ux, uy, w] =

∫
Ω
(w2

,x +2ux,x−1)2 +2(w,xw,y +ux,y +uy,x)2 +(w2
,y +2uy,y−1)2 +σ2|∇2w|2 .

(2.2)
We shall call strain energy (Istrain) the first three terms, which depend only on ∇Ψ, and
bending energy (Ibending) the singular perturbation proportional to |∇2w|2. The standard
elasticity scaling gives

I
(σ)
FvK[Ψ,Ω] =

1
λ2

I
(λσ)
FvK [Ψ(λ), λΩ] (2.3)

where Ψ(x)(λ) = λΨ(x/λ). In closing, we notice that IFvK is invariant under changes of
coordinates, as is evident from the vectorial representation in Eq. (1.1) (this is not to be
confused with invariance under composition of Ψ with a rotation, which does not hold for this
geometrically linear model).

If the boundary has a flat part, then for small enough σ we can choose coordinates such
that the rectangle R = (0, σ) × (0, L) is contained in Ω and {0} × (0, L) ⊂ ∂Ω. The rectangle
R contains �L/σ� disjoint squares, (0, σ) × ((k − 1)σ, kσ), for k = 1, . . . , �L/σ�. We intend to
prove that each of them has energy density at least of order 1, which implies the thesis. More
precisely, we have

Lemma 1 Let Qσ = (0, σ)2. There is a positive constant c∗ such that if u = w = ∇w = 0 for
x = 0, then

I
(σ)
FvK[u,w,Qσ ] ≥ c∗σ2 . (2.4)
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Proof. The statement is invariant under rescaling in σ, hence we can assume σ = 1. We reason
by contradiction, and assume that there is a sequence (uj , wj) such that I

(1)
FvK[uj , wj , Q1] → 0.

Then ∇2wj → 0 in L2 and since wj = ∇wj = 0 on one side of the square, this implies wj → 0
in W 2,2. Thus |∇wj |2 → 0 in L1(Q1) and therefore∫

Q1

∣∣2uj
x,x − 1

∣∣ + 2
∣∣uj

x,y + uj
y,x

∣∣ +
∣∣2uj

y,y − 1
∣∣ → 0 . (2.5)

For β ∈ [0, 1] consider

χj
β(s, t) = 2(uj

x + βuj
y)(s, βs + t) − (1 + β2)s . (2.6)

Then

∂sχ
j
β(s, t) =

[
(2uj

x,x − 1) + 2β(uj
x,y + uj

y,x) + β2(2uj
y,y − 1)

]
(s, βs + t) → 0 in L1(Q1/2)

(2.7)
by (2.5). Since χj

β(0, t) = 0 the Poincaré inequality implies that for s ≤ 1/4

∫ 1/2

1/4

∣∣2(uj
x + βuj

y)(s, y) − (1 + β2)s
∣∣ dy ≤

∫ 1/2

0

∣∣∣χj
β(s, t)

∣∣∣ dt → 0 (2.8)

for all β ∈ [0, 1]. This easily leads to a contradiction (take e.g. β = 0, β = 1 and β = 1/2),
hence proves the thesis. •

Proof of Theorem 1 Consider a Lipschitz domain Ω. Then by definition ∂Ω is locally
the graph of a Lipschitz function h and Ω lies locally to one side of ∂Ω. Exploiting again
rotational invariance it suffices to show that there is a constant c∗, only depending on the
Lipschitz constant L of h, such that

I
(σ)
FvK[u,w, Q̃σ ] ≥ c∗σ2 (2.9)

for all domains
Q̃σ = {(x, y) : x = h(y) + s̃, s̃ ∈ (0, σ), y ∈ (0, σ)} (2.10)

where for simplicity h(0) = 0. We may again assume σ = 1 since scaling leaves the Lipschitz
constant of h invariant. Arguing again by contradiction, we assume that there are sequences
uj, wj and hj such that

I
(1)
FvK[uj , wj , Q̃j

1] → 0 (2.11)

with Lip hj ≤ L. Taking a subsequence and relabeling we can further assume that hj → h∞

uniformly. Note that the change of variables

s̃ = x − hj(y) , t̃ = y (2.12)

is a volume preserving map of Q̃j
1 onto Q1. Let f j(s̃, t̃) = (∇wj)(s̃ + hj(t̃), t̃). Then ∂s̃f

j → 0
in L2(Q1), and thus ∣∣∣∣∇wj

∣∣∣∣
L2(Q̃j

1)
=

∣∣∣∣f j
∣∣∣∣

L2(Q1)
→ 0 (2.13)
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Figure 2.1: Domain Q̃σ used in the proof of Theorem 1, and representation
of a point P in the new coordinates, P = (h(t) + s, βs + t). The left side
is the external boundary. A similar picture applies to Lemma 1, where, by
taking h(t) = 0, one obtains a square.

by Poincaré inequality. Thus (2.5) holds with Q1 replaced by Q̃j
1.

For 0 ≤ β ≤ min(1/2L, 1) the maps

Φj
β(s, t) = (s + hj(t), βs + t) (2.14)

(see Figure 2.1) are bilipschitz (Lipschitz with Lipschitz inverse) with Lipschitz constants
bounded independently of j. Moreover there exists a nonempty open set U with

U ⊂ Φj
β

(
Q1/2

) ⊂ Q̃j
1 (2.15)

for all j and β as above. Let

χj
β(s, t) = 2(uj

x + βuj
y)[Φ

j
β(s, t)] − (1 + β2)s . (2.16)

Then, as before (2.5) yields
∂sχ

j
β → 0 in L1(Q1/2) . (2.17)

Taking first β = 0 and then β 
= 0 we deduce that

uj
x → u∞

x , uj
y → u∞

y in L1(U) , (2.18)

where
2(u∞

x + βu∞
y ) ◦ Φ∞

β (s, t) = (1 + β2)s (2.19)
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Since Φ∞
β is again bilipschitz both u∞

x (take β = 0) and u∞
y (take β 
= 0) are Lipschitz.

Differentiating (2.19) with respect to s we obtain

(
1
β

)T

∇u∞
(

1
β

)
= (1 + β2) a.e. in U , (2.20)

for all β with 0 ≤ β ≤ min(1/2L, 1). Thus

(∇u∞)T + ∇u∞ = Id a.e. in U . (2.21)

On the other hand differentiating (2.19) with respect to t and taking β = 0 and β 
= 0 we
obtain

∇u∞
(

(h∞)′

1

)
= 0 . (2.22)

Multiplication by ((h∞)′, 1) from the left yields a contradiction with (2.21). This finishes the
proof of Theorem 1. •

3 Upper bound

This Section is devoted to the construction of a displacement field Ψ with energy bounded
by cσ, where c denotes a generic constant which depends only on the domain. The main
idea behind our construction is that the distance function is able to relax compression only
in one direction (which, locally, is the one orthogonal to the boundary), whereas compression
in the direction parallel to the boundary is relaxed by small-scale in-plane oscillations. Such
oscillations, which are the analogue in the present context of the twinned microstructures in
solid-to-solid phase transitions [14, 15], will be called folds (by “fold” we mean one period in
the simplest periodic construction, and in its smoothly deformed versions; this corresponds
to a pair of twins in the usual martensitic language). The folding scale must be of order
σ close to the boundary, but will be much larger in the interior. The change in oscillatory
profile with changing distance from the boundary, which corresponds to the disappearance of
some folds, leads to a much lower energy if also the third component is nonzero, providing the
main difference with the σ2/3 scaling obtained by Jin and Sternberg [13] in their constrained
problem (see Eqs. 3.10-3.13). The main result of this Section is the following

Theorem 2 (Upper bound) Let Ω be an open, bounded subset of R2 with piecewise C4

boundary. Then, there is a positive constant c̄Ω such that for small enough σ there is a
displacement field Ψ = (u,w) with u = w = ∇w = 0 on ∂Ω and

I
(σ)
FvK[Ψ,Ω] ≤ c̄Ωσ . (3.1)

For simplicity we focus first on a rectangle, with boundary conditions enforced only on the
y-axis (Section 3.1), and afterwards (Section 3.2) we show how this construction generalizes
to an arbitrary smooth domain Ω.
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3.1 Construction for a rectangle

In this Section we construct a deformation field Ψ on the rectangle R = [0, Lx]× [0, Ly] which
obeys the boundary condition u = w = ∇w = 0 on {0} × [0, Ly ] and has energy bounded by
cσ. In a first approximation, one can seek the optimal displacement field which is invariant
under translations in y, which is easily seen to be Ψ = Ψ(x) = (0, 0, x) (this corresponds to
the solution of the simplified functional (1.2) in this geometry). To construct the y-dependent
oscillations it is natural to consider the deviation from this solution, hence we define the
modified functional

J [z, v, w,Ω] = IFvK[z − w, v,w + x,Ω] (3.2)

=
∫

Ω
(w2

,x + 2z,x)2 + 2(w,xw,y + z,y + v,x)2 + (w2
,y + 2v,y − 1)2 + σ2|∇2w|2 .

We first relax the third term of (3.2) by constructing a natural oscillatory profile as a function
of y, and then discuss how it changes with changing x. We shall indicate by Ξ = (z, v, w)
the modified displacement field which enters J , to distinguish it from the corresponding Ψ =
(z − w, v,w + x). We remark that J recovers invariance under translations (but not under
rotations). Hence when considering rectangles contained in R we can translate them to have
a corner in the origin.

For definiteness, we focus on a rectangle A = [0, l] × [0, h], which can be thought of as a
small piece of our domain R. If no dependence on x is present, we can set z = 0 so that the
first two strain terms are identically zero. The third one can be made to vanish by choosing
w and v which satisfy the differential equation

w2
,y + 2v,y = 1 . (3.3)

One possible choice is

w̃h(y) =
h

π
√

2
sin

2πy

h
(3.4)

ṽh(y) = − h

8π
sin

4πy

h
. (3.5)

Note that there is considerable freedom in this choice, any other smooth solution with the
suitable scaling and boundary conditions would only cause changes in the constants appearing
below. For later reference, we note that ṽ, w̃ and their derivatives are bounded:

sup
y∈[0,h]

∣∣∣∂n
h∂m

y w̃h(y)
∣∣∣ ≤ ch1−n−m , for n ≥ 0 , m ≥ 0 , (3.6)

and the same bounds hold for ṽh. These bounds will be needed up to third derivatives (here
and below, c denotes a generic positive constant which can depend only on the domain).

The energetic cost of (3.4-3.5) is purely from bending, and equals 4π2σ2l/h. We further
note that the boundary values on the horizontal sides of A do not depend on h, i.e.

w̃h
,y(0) = w̃h

,y(h) =
√

2 , w̃h(0) = w̃h(h) = ṽh(0) = ṽh(h) = 0 . (3.7)
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This shows that different pieces with different h can be easily put together across an
horizontal boundary, whereas some additional construction is needed to match different h’s
along vertical boundaries. The boundary conditions (3.7) can hence be used to divide our
global construction into independent pieces along directions parallel to the coordinate axes.
From the form of the functional it is clear that we can safely join different pieces of our test
function provided that z, v, w and ∇w are continuous across internal boundaries. We now
formalize these boundary conditions, both for horizontal and vertical segments.

Definition 1 We say that a displacement field Ξ = (z, v, w) satisfies standard boundary con-
ditions along a horizontal segment [x0, x0 + l]×{y0} if on that segment it obeys z = v = w = 0
and w,y =

√
2.

Definition 2 We say that a displacement field Ξ = (z, v, w) satisfies standard boundary con-
ditions along a vertical segment {x0}× [y0, y0 +h] if along that segment w(x0, y) = w̃h(y−y0),
v(x0, y) = ṽh(y − y0), with z = w,x = 0.

We now consider a region where the oscillation period h changes as a function of x. It is
more convenient to use a domain symmetric with respect to the x axis. Since w̃ and ṽ are
periodic in y they do not need to be changed (or translated), and all the results above are also
valid in a symmetric region A′ = [0, l] × [−h/2, h/2], with the only difference that the sign of
the boundary values changes. Indeed, we get

w̃h
,y(±h/2) = −

√
2 , w̃h(±h/2) = ṽh(±h/2) = 0 . (3.8)

Let a(x) be the oscillation period, which will be of order h and change on a distance of order
l  h, and consider the region [0, l] × [−a(x)/2, a(x)/2]. Define w and v as in (3.4-3.5), with
h replaced by the local a(x):

w(x, y) = w̃a(x)(y) , v(x, y) = ṽa(x)(y) , (3.9)

and consider the energy (3.2). The third strain term is still zero, but the x derivatives are no
longer zero. Since w,y is of order 1, whereas v,x and w,x are of order h/l, the first strain term
is O(h/l)4, the second one O(h/l)2. Hence for h � l the latter is the most dangerous, and we
choose to cancel it by a suitable choice of z. This can be done in such a way that the scaling
of the first term is unchanged. Indeed, the second strain term vanishes provided that

−z,y = w,xw,y + v,x =
da(x)
dx

[
∂w̃a(y)

∂y

∂w̃a(y)
∂a

+
∂ṽa(y)

∂a

]
. (3.10)

Solving for z we get

z(x, y) =
da(x)
dx

[
z̃a(x)(y) + ζ(x)

]
(3.11)

where ζ(x) is a still undetermined function of x, and

z̃h(y) =
y2

2h
+

h

8π2

(
cos

4πy

h
− 1

)
+

y

8π
sin

4πy

h
(3.12)
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is a solution of

−∂z̃h(y)
∂y

=
∂w̃h(y)

∂y

∂w̃h(y)
∂h

+
∂ṽh(y)

∂h
(3.13)

which obeys the same estimates as w̃h and ṽh in Eq. (3.6). This implies |z| ≤ |a′|h, |z,x| ≤
|a′′|h + |a′|h/l, and |z,y| ≤ |a′|, provided that |ζ| ≤ h and |ζ,x| ≤ h/l. Note that (3.13) has
been derived without assuming an explicit form for a(x), and only the explicit form (3.12) for
z̃h depends on the choice made in (3.4-3.5) for w̃h and ṽh.

The displacement field so constructed reduces to Ξ0 = (0, ṽa(x), w̃a(x)) on the two vertical
boundaries (i.e. for x = 0 and for x = l), provided that da/dx vanishes both for x = 0
and for x = l. Along the oblique boundaries [0, l] × {±a(x)} instead we have v = w = 0,
and w,y = −√

2, but z is nonzero. Indeed, z̃h(0) = 0, but z̃h(±h/2) = h/8. Thus in the
construction below we shall need to exploit our freedom to choose ζ(x) to ensure continuity
of z.

At this point, it would be tempting to simply let a(x) tend to zero at the points where a fold
has to disappear (branching points). However, this would lead to infinite energy concentrating
at the point where a vanishes, because the bending term would be of order

σ2

∫
|∇2w|dxdy ∼ σ2

∫
1

a(x)
dx , (3.14)

which diverges if a(0) = a′(0) = 0. This problem can be avoided by stopping a at some
minimum value (called η below) not smaller than σ, and then joining with smooth interpolation
in a final thin layer. In particular, we set

a(x) =
h

2

[
1 − φ

(x

l

)]
+ ηφ

(x

l

)
, (3.15)

where φ : [0, 1] → [0, 1] is a smooth function such that φ(0) = 0, φ(1) = 1, φ′(0) = φ′(1) = 0,
with bounded derivatives, 0 ≤ φ′ ≤ 2 and |φ′′| ≤ 4, which further satisfies φ(t) + φ(1 − t) = 1
and φ(t) ≥ t2. For example, φ(x) = 2x2 for x ∈ [0, 1/2], φ(x) = 1 − 2(1 − x)2 for x ∈ [1/2, 1].
The “dangerous” bending term (3.14) can then be estimated using, for λ > 0,∫ 1

0

dt

λ + φ(t)
≤

∫ ∞

0

dt

λ + t2
=

π

2λ1/2
, (3.16)

and the strain energy will be of order 1 only in the small region of height η where the sign of
w,y has to change.

We come therefore to the following

Lemma 2 Given a rectangle B = (0, l)× (−h/2, h/2) with h ≤ l there is a displacement field
Ξ = (z, v, w) which satisfies the standard horizontal boundary conditions on the top and bottom
sides of B (Def. 1), and the vertical ones (Def. 2) on the three segments {0} × (−h/2, 0),
{0} × (0, h/2), and {l} × (−h/2, h/2), with energy bounded by

J [Ξ, B] ≤ c

[
h5

l3
+

σ3/2l

h1/2
+ σ3/2h1/2

]
. (3.17)
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0

l
 0

-h/2

0

h/2

0

Figure 3.1: Subdivision of the domain B used in the construction of Lemma
2 (left panel) and representation of the constructed w in Ωa and Ωb (right
panel).

Proof. We first decompose the domain into the part of length l0 where the inner twin smoothly
decreases its width from h/2 to η, and the one where it disappears by interpolation, of length
m = l − l0 (see Figure 3.1). The values of m and η will be chosen below, now we merely
assume the ordering η ≤ m ≤ h ≤ l which allows us to simplify many terms.

For x ∈ [0, l0] the width of the inner twin is given by

a(x) =
h

2

[
1 − φ

(
x

l0

)]
+ ηφ

(
x

l0

)
, (3.18)

which smoothly decreases from h/2 to η. The domain B is then naturally divided into three
parts: Ωa is the region |y| ≤ a(x)/2 occupied by the “small” twin, Ω′

b is the region −h/2 ≤
y ≤ −a(x)/2 occupied by the first half of the “large” fold, and Ω′′

b is the one occupied by the
other half (see Figure 3.1). In Ω′

b, we set

w = w̃h−a(x)

(
y +

h

2

)
, v = ṽh−a(x)

(
y +

h

2

)
, z = a′(x)z̃h−a(x)

(
y +

h

2

)
(3.19)

and the same in Ω′′
b , with the arguments replaced by y − h/2 [e.g. w = w̃h−a(y − h/2), etc.].

Using Eq. (3.7) and z̃h(0) = 0 it is easy to see that on the external boundary this choice of
w, v, z satisfies Definition 1. Along the internal boundaries [0, l0]×{±a(x)/2} we get instead
w = v = 0, w,y = −√

2 [from (3.8)], and z = a′(x)(h − a(x))/8 [from z̃h(±h/2) = h/8].
In Ωa we set

w = w̃a(x) (y) , v = ṽa(x) (y) , z = a′(x)
[
z̃a(x) (y) + ζ(x)

]
(3.20)
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where ζ is still to be determined. On the internal boundaries we get z = a′(x)(ζ + a/8),
hence ζ(x) = (h − 2a(x))/8 leads to a continuous z. For w and v Eq. (3.8) holds again. This
shows that the Ξ so constructed has enough smoothness and matches all required boundary
conditions.

We now come to the energy estimate. The only nonzero strain term is the first one, which
is bounded using |w,x| ≤ |a,x||w̃a

,a| ≤ ch/l and |z,x| ≤ |a,x|2|z̃a
,a|+ |a,xx||z̃a+ζ| ≤ ch2/l2, leading

to

Jstrain[Ξ,Ωa ∪ Ωb] ≤ c
h5

l3
(3.21)

(where Ωb = Ω′
b ∪ Ω′′

b ). We now compute the bending term. We need to estimate

w,xx = a,xxw̃
a
,a + a2

,xw̃
a
,aa , w,xy = a,xw̃

a
,ay , w,yy = w̃a

,yy . (3.22)

Given the bounds on a and on w̃h, we get |∇2w| ≤ c/a(x) in Ωa, and |∇2w| ≤ c/h in Ωb.
Performing the y integration first we get

Jbending[Ξ,Ωa ∪ Ωb] = σ2

∫
Ωa∪Ωb

∣∣∇2w
∣∣2 ≤ σ2

∫ l0

0

c

h
+

c

a(x)
≤ σ2l√

ηh
(3.23)

where in the last step we have used the definition of a(x) and Eq. (3.16). This concludes the
construction in the region [0, l0] × [0, h].

In [l0, l] we define Ξ as a smooth interpolation between the values at x = l0 and and x = l,

Ξ(x, y) = Ξ(l0, y)
[
1 − φ

( x

m

)]
+ Ξ(l, y)φ

( x

m

)
. (3.24)

This has small energy because two boundary values differ significantly only in the small set
Ωc = [l0, l] × [−η/2, η/2], which has relative size |Ωc|/|Ωc ∪ Ωd| = η/h. In the large set
Ωd = [l0, l]×{η ≤ 2|y| ≤ h} instead the boundary conditions are similar (the relative difference
|Ξ(l0) − Ξ(l)|/(|Ξ(l0)| + |Ξ(l)|) is of order η/h). It is also clear that, since η ≤ m, the y-
derivatives are the most dangerous, hence we focus on them in the estimates.

In Ωd the difference from the zero-strain boundary condition, Φ(x, y) = Ξ(x, y) − Ξ(l, y),
is small. For example, for y < −η/2,

|w,y(l0, y) − w,y(l, y)| =
∣∣∣∣w̃h−η

,y

(
y +

h

2

)
− w̃h

,y

(
y +

h

2

)∣∣∣∣ ≤ c
η

h
(3.25)

because w̃h has bounded second derivatives, and the same for the other components. By direct
integration we get |Φ(l0, ·)| ≤ cη. From (3.24) we then estimate the full gradient of Φ in Ωd,
obtaining |∇Φ| ≤ η(1/m+1/h). This in turn gives Jstrain[Ξ,Ωd] ≤

∫
(∇Φ)2 +(∇Φ)4 ≤ η2h/m

(some terms have disappeared because η ≤ m ≤ h).
In Ωc instead we just use the uniform bound on the gradient |∇Ξ| ≤ c, which gives for the

strain energy Jstrain[Ξ,Ωc] ≤ c|Ωc| = cmη.
The bending term is again computed separately in the two subregions. In Ωd the same

argument as in (3.25) allows to control |∇2w| ≤ η/m2 (this result depends on the ordering
m ≤ h and on control on the third derivative of w̃h).
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In Ωc the dominant contribution is instead the w,yy derivative of order 1/η (because of the
boundary condition at x = l0), and this leads to a total |∇2w| ≤ 1/η2 (using the ordering
η ≤ m). The total bending energy is then

Jbending[Ξ,Ωc ∪ Ωd] ≤ cσ2η2h

m3
+

cmσ2

η
. (3.26)

Collecting the various terms we get

J [Ξ, B] ≤ c

[
h5

l3
+

σ2l

(ηh)1/2
+

η2h

m
+

mσ2

η

]
(3.27)

where the two irrelevant terms mη and σ2ηhm−3 have been dropped. We finally fix η = σ
and m = (σh)1/2 and get the final result of Lemma 2. •

We now show how the basic building block constructed in Lemma 2 delivers a test function
with energy scaling linearly in σ in a simple geometry.

Lemma 3 Given R = (0, Lx)×(0, Ly), for small enough σ there is a Ψ with u = w = ∇w = 0
for x = 0, and with energy bounded by cσ. Further, this result can be achieved with a Ψ which
for x > cσ1/3 does not depend on x, and which obeys |Ψ − (0, 0, x)| ≤ cσ1/2, |∇Ψ| ≤ c,
|∇2Ψ| ≤ c/σ.

Proof. The main part of our construction is based on a geometric subdivision of the domain.
For large x, one can take the profiles of (3.4-3.5) with h of order σ1/2 and z = 0, reaching
an energy of the correct order of magnitude (the strain part vanishes, and |∇2w| ≤ cσ−1/2).
For small x, we need to refine, down to scale σ. Since from Lemma 2 we know how to double
the period of oscillation, it is natural to fix the widths at the various stages to hi = σ2i, for
1 ≤ i ≤ N , where N is defined by 2N � σ−1/2. The error arising from taking an integer
approximation to the solution of this equation is negligible for small enough σ, and will not be
explicitly considered in the following. Clearly it is always possible to construct Ψ in a larger
domain [0, Lx] × [0, σ2N ] which contains an integer number of twins, and then restrict.

We seek a sequence of spacings li which constitute the widths of the regions where branch-
ing takes place. We apply Lemma 2 on all rectangles of size li ×hi, and then from the profiles
Ξi in the rectangles we obtain Ψ̃ = (z −w, v,w + x). Finally, for x ∈ [0, σ] we modify Ψ̃ using
a smooth interpolation between Ψ̃ and the boundary condition,

Ψ(x, y) = Ψ̃(x, y)φ
(x

σ

)
. (3.28)

Since |Ψ̃| ≤ cσ for x ≤ σ, we have ∇Ψ of order 1 and ∇2w of order 1/σ, hence the energy in
the strip where φ 
= 1 is controlled by the area, i.e. Lyσ. The total energy is then bounded by

IFvK[Ψ, R] ≤ cσLy

[
1 +

N∑
i=1

[
h4

i

l3i
+

σ3/2li

h
3/2
i

+ σ3/2h
−1/2
i

]]
. (3.29)
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The first term corresponds to both the boundary layer and the x-independent oscillations at
large-x, while the series comes from the region of branching (Lemma 2). Since the third term
in the series directly sums to σ, we focus on the remaining two.

A natural criterion to choose the spacings li is to minimize the energy bound, which
amounts to choose for each i the li which minimizes

h4
i

l3i
+

σ3/2

h
3/2
i

li , (3.30)

which is li = hi(hi/σ)3/8. With this choice, both series converge as 2−i/8, and the energy
estimate is proven. With this construction the branching process covers a region

∑
i li � σ5/16.

It is also interesting, even if not needed for the following discussion, to try to constrain
the branching process to a smaller region close to the boundary. In order to do this, one
should optimize not only the energy contribution per branching step in (3.29), but also the
consumption in horizontal distance, hence minimize

h4
i

l3i
+

σ3/2

h
3/2
i

li + µli (3.31)

for li, where µ is a suitable penalization parameter which will be fixed later. This gives

li = hi

(
4

(σ/hi)3/2 + µ

)1/4

(3.32)

which has a crossover from li ∝ hi (at large i) to li ∝ hi(hi/σ)3/8 (at small i), (the second
scaling clearly coincides with the one obtained above). In practice, it is simpler to take

li =
{

σ211i/8 1 ≤ i ≤ k
σ2i23k/8 i > k

(3.33)

where the constant has been chosen to ensure continuity at k, and the variable k replaces µ,
which is now given by µ = 2−3k/2. The resulting energy contribution from the series is

N∑
i=1

h4
i

l3i
+

σ3/2

h
3/2
i

li = σ
k∑

i=1

2−i/8+2−i/8+σ
N∑

i=k

2i− 9
8
k+2−

1
2
i+ 3

8
k ≤ σ

(
1 + 2N− 9

8
k + 2

3
8
k− 1

2

)
(3.34)

which is bounded by cσ provided that 8N/9 ≤ k ≤ N . The total length,

∑
i

li =
k∑

i=1

σ211i/8 +
N∑

i=k

σ2i23k/8 = σ23k/8(2N + 2k) , (3.35)

is clearly optimized by choosing the smallest value, k = 8N/9, which gives
∑

i li = σ24N/3 =
σ1/3 < σ5/16. This concludes the proof of Lemma 3. •
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3.2 Construction for a generic domain

The construction in a generic domain is considerably simplified if the domain is first trian-
gulated on a scale smaller than the minimum radius of curvature of the boundary. Such a
triangulation depends only on the domain, and not on σ, hence it only affects the constant in
(3.1), not the scaling. It is clear that any domain with C4 boundary can be subdivided into
a finite number of pieces, each of which has two straight sides and a curved (C4 regular) one,
with radius of curvature bounded from below by a given multiple of the side length. The three
angles can be further assumed to be less than π/2. Then, if one can construct a function with
energy cσ in such pieces, with the usual u = w = ∇w = 0 boundary conditions, by putting
them together one gets the result for the full domain. Hence we can focus on curvilinear
triangles, which satisfy the following

Definition 3 A simply connected, bounded set Σ ⊂ R2 is said to be if type A if its boundary
is the union of three curves of class C4, which join at angles less than π/2, and whose radius
of curvature is always larger than 10 times the diameter of Σ.

As done above, it is natural to start the construction with the distance function, which is
singular along three smooth curves in the interior (see Figure 3.2). It is simple to see that
they divide Σ into three parts, ω1, ω2 and ω3, which obey the following

Definition 4 A simply connected, bounded set ω ⊂ R2 is said to be if type B if its boundary
is the union of three curves of class C4, which join three points X, Y and P , such that the
angles at X and Y are less than π/4, and all radii of curvature are larger than 10 times the
diameter of ω. The XY side is called external side.

Figure 3.2: Each curvilinear triangle Σ (of type A) is subdivided into three
pieces ωi of type B along the singular set of the distance function to the
boundary, which bisects the angles.

Let us concentrate on one of the three pieces, say ω1. Since our construction is based on
oscillations superimposed to the distance function, it is natural to use as variables the arc

14



length along the external side and the distance function itself. The construction of Section 3.1
will need to be modified in order to take into account the curvature of the boundary, and care
will also be needed to properly enforce all boundary conditions and ensure smooth matching
of different pieces.

Having presented the general scheme, we start to discuss the details of the construction in
a curvilinear triangle ω of type B. Let t denote arc length along the external side of ω, and s
the distance function from that side. The change of coordinates is

φ(s, t) = α(t) + sn(t) (3.36)

where n = (−α′)⊥ is the inner normal, and (ax, ay)⊥ = (−ay, ax) (this defines the direction of
increasing t). The two new basis vectors are

es = n(t) , et = n⊥(t) = α′(t) ; (3.37)

they both depend on t but not on s, and have derivatives proportional to the local curvature
κ(t),

n′ = −κn⊥ , (n⊥)′ = κn . (3.38)

We shall denote the basis vectors with (es, et) when using (s, t) as coordinates, and with
(n, n⊥) when using (x, y). In the new coordinates, the domain ω takes the form

ω̃ = {0 ≤ t ≤ T , 0 ≤ s ≤ f(t)} (3.39)

where f(t) is C4 in [0, T1] and in [T1, T ], |f ′(t)| ≤ c1, and |f(t)| ≤ diam ω ≤ 1/(2 sup |κ(t)|)
[the point (s, t) = (f(T1), T1) corresponds to the corner P ]. We are now ready to express the
functional in the new coordinates.

Lemma 4 Let ω be a domain of type B as in Definition 4, and let (s, t) be distance to the
external side and arc length, as in (3.36). Then, IFvK[Ψ, ω] = Ĩ[Ψ, ω̃], which is the sum of

Ĩstrain[Ψ, ω̃] =
∫

ω̃

[
w̃2

,s + 2ũs,s − 1
]2 + 2 [γw̃,sw̃,t + ũt,s + γũs,t + γκũt]

2

+
[
γ2w̃2

,t + 2γũt,t − 2γκũs − 1
]2 dsdt

γ(s, t)
, (3.40)

and of

Ĩbending[Ψ, ω̃] ≤ cσ2

∫
ω̃
|∇2w̃|2 + |∇w̃|2 , (3.41)

where
γ(s, t) =

1
1 − sκ(t)

, (3.42)

κ(t) is the curvature of the external side of ω, ω̃ is the image of ω under the change of variables
(3.36), and us = u · es and ut = u · et are components taken with respect to s and t.
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Proof. To express the gradients of u and w in the new coordinates we start from the gradient
of the transformation,

∂(x, y)
∂(s, t)

= ∇φ = n ⊗ es + (1 − sκ)n⊥ ⊗ et , (3.43)

and its inverse,
∂(s, t)
∂(x, y)

= (∇φ)−1 = es ⊗ n + γet ⊗ n⊥ , (3.44)

where γ(s, t) was defined in (3.42). We are now ready to compute the gradients of u(x, y) and
w(x, y) in terms of ũ(s, t) and w̃(s, t), which are

∇w = w̃,ses + γw̃,tet (3.45)

and
∇u = ∂sũ ⊗ n + γ∂tũ ⊗ n⊥ . (3.46)

More explicitly, since ũ = ũses + ũtet, and considering the dependence of es and et on t, we
get

∇u =
(

ũs,s γ(ũs,t + κũt)
ũt,s γ(ũt,t − κũs)

)
. (3.47)

The last term we need is the second gradient of w,

∇2w =
(

w̃s,s γw̃,ts + κγ2w̃,t

γw̃,st + γ,sw̃,t γ2w̃,tt + γγ,tw̃,t − κγw̃,s

)
. (3.48)

By a simple substitution we write IFvK in the new variables, and the thesis follows. •

The construction of a deformation with small energy J̃ is analogous to the one performed
in Section 3.1. In parallel to Eq. (3.2), we start by subtracting the distance function, and
obtain

J̃strain[z̃, ṽ, w̃, ω̃] = Ĩstrain[z̃ − w̃, ṽ, w̃ + s, ω̃] (3.49)

=
∫

ω̃

[
w̃2

,s + 2z̃,s

]2 + 2 [γw̃,sw̃,t + ṽ,s + γz̃,t + γκṽ]2

+
[
γ2w̃2

,t + 2γṽ,t − 2γκz̃ + 2γκw̃ − 1
]2 dsdt

γ
. (3.50)

The bending term is bounded by J̃bending ≤ cσ2
∫ |∇2w̃|2 + (|∇w̃| + 1)2. The second term is

negligible in our construction with bounded gradients, and will be dropped from now on. As
above, we shall denote by Ξ̃ the rescaled displacement field (z̃, ṽ, w̃).

To fully accomodate for the presence of the γ factors in J̃strain would require changing the
basis functions w̃h depending on position. However, if |Ξ| is small a simple rescaling will do.
Indeed, we have
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Lemma 5 Let Ξ be a displacement field satisfying |Ξ| ≤ c1σ
1/2 and |∇Ξ| ≤ c2, in a domain

ω̃ of type (3.39). Then,
J̃ [Ξ̃, ω̃] ≤ c (J [Ξ, ω̃] + σ) (3.51)

where Ξ̃ = (z̃, ṽ, w̃) = (γ−2z, γ−1v, γ−1w), J was defined in (3.2), and the constant c depends
on c1, c2 and ω̃.

Proof. First observe that 1/2 ≤ γ ≤ 3/2, and |∇γ|, |∇2γ| are bounded (because the
external side of ω is C4). Then, the jacobian γ−1 in (3.50) can be dropped, and the rescaled
functions satisfy ∇w̃ = γ−1∇w + O(σ1/2), and analogous estimates hold for z̃ and ṽ. We now
consider the three strain terms of Eq. (3.50). The first one is bounded using

w̃2
,s + 2z̃,s = γ−2(w2

,s + 2z,s) + O(σ1/2) (3.52)

which then gives ∫
ω̃
(w̃2

,s + 2z̃,s)2 ≤ (sup γ)−4

∫
ω̃
(w2

,s + 2z,s)2 + cσ|ω̃| . (3.53)

The second one,

γw̃,sw̃,t + ṽ,s + γz̃,t + γκṽ = γ−1 (w,sw,t + v,s + z,t) + O(σ1/2) (3.54)

and the third one are treated similarly. Finally, consider the bending term. Since derivatives
of γ are bounded, we get |∇2w̃ − γ∇2w| ≤ c, and the Lemma is proved. •

So far, we have reduced the problem of constructing Ψ on a general domain to that of
constructing Ξ on a standard domain ω̃ of the form (3.39), with J [Ξ, ω̃] ≤ cσ. The curvature
terms in the functional have disappeared in view of Lemma 5, and only the right boundary
s = f(t) of ω̃ is still not straight. In analogy with Lemma 3 we now (Lemma 6) construct Ξ in
ω̃ with small J [Ξ, ω̃] and |Ξ| ≤ cσ on ∂ω̃. Then (Lemma 7) we generate the corresponding Ξ̃
with the same boundary condition and small J̃ [Ξ̃, ω̃] (using Lemma 5), and smoothly match
three such constructions to obtain Ψ defined on a set of type A.

Lemma 6 Let ω̃ be a domain of type (3.39). Then there exists a field Ξ defined on ω̃ such
that

J [Ξ, ω̃] ≤ cσ , (3.55)

with
|Ξ| ≤ cσ1/2 , |∇Ξ| ≤ c , |∇2w| ≤ cσ−1 (3.56)

on ω̃, with |Ξ| ≤ cσ on ∂ω̃.

Proof. The construction is analogous to the one used in Lemma 3 for the rectangle. Let N be
the integer that most closely solves 2N = σ−1/2, and divide the domain in horizontal stripes of
height 2Nσ � σ1/2. On these boundaries, we impose the usual horizontal boundary conditions
(Definition 1). Each stripe is now filled with pieces of two types:
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Figure 3.3: A slice of the transformed domain ω̃, filled with pieces of type
F (dashed rectangles) or B (empty rectangles).

• branching pieces, which at step i have height hi = 2iσ and width li = 211i/8σ, which are
called Bi and in which Ξ is given by Lemma 2, and

• flat pieces, which at step i have the same height hi = 2iσ and variable width (for i < N
it will be less than li), which are called Fi and in which Ξ = (0, ṽhi(s− s0), w̃hi(s− s0))
according to Eqs. (3.4-3.5).

The construction in each stripe is done in three pieces: in the central region there is a unique
fold of height hN � σ1/2, in the left and right parts branching takes place, down to scale
h0 = σ (see Figure 3.3). The left part of the construction (close to the straight boundary
{s = 0}) is identical to the one of Lemma 3, and only uses Bi pieces. The right part is best
understood starting from the curved boundary {s = f(t)}, and using all Bi pieces in order,
putting each of them as close as possible to the mentioned boundary. The remaining empty
spaces, which at step i (for i < N) have width controlled by hi sup |f ′(t)|, are filled with Fi
pieces. The two branching regions are finally joined by a (possibly long) FN piece. If there is
not enough space to complete both constructions, they are stopped at the largest possible ī,
and the joined with a F ī piece, whose width is bounded by l̄i+1 [hence its energy is bounded
by the energy of B(̄i + 1)].

The estimate of the energy goes as follows. The branching pieces are exactly those that
would be used in a rectangle with the same height and width, with possibly some excluded,
hence their energy is of order σ. The flat pieces have an energy proportional to σ2l/h [this
was computed after Eq. (3.6)], and since for each of them l/h is bounded by the slope of
the boundary each of them has energy bounded by σ2, and their number is bounded by
c
∑

i 2i ≤ c2N ≤ cσ−1/2. This yields an energy contribution of at most cσ (except for the FN
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pieces). Finally each FN piece contributes at most cσ3/2 and there can be at most cσ−1/2

such pieces. •

We finally come to the full construction for any set Σ of type A.

Lemma 7 Let Σ be a set of type A (see Definition 3). There is a constant c′Σ such that for
small enough σ, there is a displacement field Ψ = (u,w) such that u = w = ∇w = 0 on ∂Σ,
and I

(σ)
FvK[Ψ,Σ] ≤ c′Σσ.

Proof. The displacement field is constructed by interpolating between the one constructed in
Lemma 6 for each of the three type-B pieces which compose Σ and a smooth field satisfying the
boundary conditions. The smooth field is obtained by joining the distance function smoothly
to zero (and zero gradient) along the boundary, and convoluting with a smooth kernel to
eliminate the singularity along the internal boundaries. Let η be a smooth mollifier with
support in the ball of radius 1/2 and let ησ(x) = σ−2η(x/σ). Define

Wd(r) = dist(r, ∂Σ)φ
(

dist(r, ∂Σ)
σ

− 1
)

, (3.57)

and
wd = ησ ∗ Wd , (3.58)

where φ is as defined before Eq. (3.16). It is easy to verify that |∇wd| ≤ c, |∇2wd| ≤ c/σ,
|wd − dist(r, ∂Σ)| ≤ cσ, and wd = ∇wd = 0 on ∂Σ. Hence Ψd = (0, 0, wd) has bounded
energy density, and obeys the prescribed boundary conditions. We divide set Σ of type A into
three sets of type B along the singular lines of dist(r, ∂Σ), and impose as boundary conditions
Ψ = Ψd and ∇Ψ = ∇Ψd along those lines.

Let ωk be one of the three pieces of type B, and let γk
1 be its external boundary, and γk

2 ,
γk
3 the other two smooth pieces of ∂ωk. In ωk, let Ξ̃ be the displacement field constructed

(on its image ω̃k) in Lemma 6, rescaled as in Lemma 5, and mapped back into the (x, y)
coordinate system. Let Ψ̃ = (z−w, v,w+dist(r, γk

1 )) be the corresponding Ψ-field, and define
the interpolation function

φk(r) =
3∏

i=1

φ

(
dist(r, γk

i )
σ

)
, (3.59)

which is smooth, zero on ∂ωk and one in the interior. Now let

Ψ(r) = Ψ̃(r)φk(r) + Ψd(r) [1 − φk(r)] . (3.60)

It is clear that this field differs from Ψ̃ only in a region of measure cσ, where it has bounded
energy density, i.e. Ψ still has energy bounded by cσ. Further, Ψ agrees with Ψd up to the
first gradient along ∂ωk, hence it satisfies the given boundary conditions and joins smoothly
along internal boundaries. This concludes the proof. •
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Proof of Theorem 2 Theorem 2 is an immediate consequence of Lemma 7, by triangu-
lation of the domain Ω into sets of type A. •
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A Materials with nonzero Poisson’s ratio

The general form of the linearized FvK functional under isotropic compression is [17, 10]

I
(σ,ν)
FvK [u,w,Ω] =

∫
Ω
(1 − ν)|ε|2 + ν(Tr ε)2 + σ2

[
(1 − ν)|∇2w|2 + ν(∆w)2

]
, (A.1)

where ν ∈ [−1, 1/2] is the Poisson ratio [16], the rescaled deformation ε is defined by

ε = ∇u + (∇u)T + ∇w ⊗∇w − Id , (A.2)

and we use |M |2 = Tr MT M for the matrix norm. For ν = 0, (A.1) reduces to (1.1).
We now show that for the purpose of proving upper and lower bounds we can restrict to

ν = 0 without loss of generality. Indeed, since (Tr M)2 ≤ 2|M |2 for all 2 × 2 matrices M , it
follows that

(1 − |ν|)|M |2 ≤ (1 − ν)|M |2 + ν(Tr M)2 ≤ (1 + |ν|)|M |2 (A.3)

which implies that I
(σ,ν)
FvK is bounded from above and from below by a multiple of I

(σ,0)
FvK for all

values of Poisson’s ratio ν in (−1, 1/2].
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